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ABSTRACT

Hand redirection is effective so long as the introduced offsets are not
noticeably disruptive to users. In this work we investigate the use of
physiological and interaction data to detect movement discrepancies
between a user’s real and virtual hand, pushing towards a novel
approach to identify discrepancies which are too large and there-
fore can be noticed. We ran a study with 22 participants, collecting
EEG, ECG, EDA, RSP, and interaction data. Our results suggest
that EEG and interaction data can be reliably used to detect visuo-
motor discrepancies, whereas ECG and RSP seem to suffer from
inconsistencies. Our findings also show that participants quickly
adapt to large discrepancies, and that they constantly attempt to
establish a stable mental model of their environment. Together,
these findings suggest that there is no absolute threshold for possi-
ble non-detectable discrepancies; instead, it depends primarily on
participants’ most recent experience with this kind of interaction.

1 INTRODUCTION

With Virtual Reality (VR), humans can experience and interact with
an immersive simulated environment, opening up a wide range of
applications and use cases. VR can enhance interactions with virtual
objects—objects that a user cannot physically touch and experi-
ence [36]. Recent research has focused on rendering haptic feedback
for interactions with the otherwise purely virtual entities through
concepts [4, 5, 12, 35, 37, 41, 48, 54, 66], and dedicated controllers
and devices [3, 13, 53, 73, 75]. One approach for providing appro-
priate haptic feedback is the use of illusions combined with proxy
objects [4, 5, 12, 41], which is based on multisensory integration
theory: when users encounter conflicting sensory information, the
most plausible modality dominates over others, which are then sup-
pressed [28]. One common and powerful type of VR illusion is
hand redirection, which offsets the visual hand position from the
position of the user’s real hand [9, 76]. The result of this manipu-
lation can allow users to grasp objects which are out of reach [60],
provide haptic feedback when touching different virtual objects sub-
stituted by a single physical “stand-in” (i.e., a proxy) [4,5,12,22,41]
or even simulate virtual objects of different weights [63], weight
distributions [79] or dimensions [7].

This method cannot be scaled up infinitely, because if the discrep-
ancy between vision and proprioception becomes too large, it can be
noticed by a user (i.e., resulting in a semantic violation). Semantic
violations disrupt presence [68], as they are noticeable disruptions
in what is “believable” in the simulation. The extent to which il-
lusions may be used without detection is a well-studied area, and
the current state of the art is to conduct psychophysical experiments
to determine humans’ perceptual boundaries for a certain type of
illusion, reporting detection thresholds that future work can build
on [1,6,7,14,22,22,23,26,27,69,73,76,79]. However, this approach
has three major limitations: (1) the psychophysical experiment needs
to be conducted for each new device and illusion technique; (2) con-
textual factors limit the generalizability of the technique; and (3)
the experiments do not account for individual differences, which
recent evidence suggests is more meaningful compared to a group
mean [23]. The general question remains, how far can we push an
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Figure 1: Study setup: a participant is moving a virtual object embod-
ied by a physical proxy. The VR view shows the 1-to-1 mapping and
the redirected position of the virtual hand/object.

illusion without an individual noticing it? In our work, we consider
individuals’ perceptual boundaries of these illusions as a form of
personalization. We explore the extent to which a system can au-
tomatically detect when these thresholds have been crossed for an
individual—i.e., how can we assess whether a semantic violation
has occurred without a user telling us? Our long-term vision is to
use this information to automatically tailor illusions based on an
individual’s perceptual boundary in an on-the-fly fashion.

Therefore, the goal of this work is to understand which sensor
modalities can be reliably used to detect noticeable visuo-motor
discrepancies by investigating electroencephalogram (EEG), electro-
cardiogram (ECG), electrodermal activity (EDA), respiration (RSP)
and interaction data. As part of this work, we also investigate how
quickly participants adapt to such discrepancies, and study how long
this adaptation process takes. We conducted an experiment with 22
participants performing a simple Fitts’s law style [49] docking task,
with and without a noticeable hand redirection offset (tuned to each
participant). Our results suggest that EEG is a reliable method to
detect that a participant has experienced a semantic violation. In ad-
dition to EEG data, we found that interaction data—how participants
move during trials—is also a reliable method to detect noticeable
discrepancies. On the other hand, ECG and RSP seem to suffer
from inconsistencies across participants. Additionally, we observed
that participants quickly adapt to (even) larger discrepancies, and
found evidence that there seems to be no absolute threshold for the
possible discrepancy that can be introduced. Instead, what partici-
pants perceived as the “ground truth” depended mostly on their most
recent experience with this kind of interaction.
In this work, we make five contributions:

1. We provide a method to study noticeable illusions tailored to
an individual’s perceptual boundary.

2. We demonstrate the capability of EEG measures to distinguish
between noticeable and unnoticeable discrepancies.

3. We outline the potential of interaction data as a reliable metric
to detect noticeable visuo-motor discrepancies.

4. We critically assess the use of physiological data to detect
visuo-motor discrepancies and discuss potential limits.

5. We open-source a data set for ECG, EDA, RSP indices and
interaction data to the research community.



2 RELATED WORK

Our work is positioned in the field of (haptic) illusions in VR and
neuroscience. We first discuss haptics and illusions in VR, then
discuss how physiological data have previously been used in VR.
Finally, we outline recent research concerning the detection of se-
mantic violations in VR using EEG.

2.1 Haptics and Illusions in Virtual Reality
Providing adequate haptic feedback when touching or interacting
with virtual objects remains a challenge in VR. One approach to
address this is called passive haptics, where properties of real-world
objects (proxies), such as shape and size [15, 20, 33] or weight [75]
are mapped onto virtual counterparts [37]. The ultimate goal would
be to have a set of universal proxies that approximate virtual objects
to such an extent that users perceive them as “real”.

To achieve this, researchers have proposed the use of illusions
alongside proxies [1, 7, 14, 22, 33, 79], taking advantage of the fact
that some differences between virtual object and physical proxy may
remain unnoticed. This exploits the visual-dominance phenomenon:
in cases where information from two senses (e.g. sight and touch) are
in conflict, vision usually dominates [10, 25]. For example, [5] used
this effect to redirect a user’s finger on a simple cylindrical proxy,
and by adding various visual overlays atop the proxy, they were
able to change the proxy’s perceived physical shape. Redirecting
users’ hands mid-air can be achieved by offsetting the position of
the virtual hand from the position in the real world [10, 12, 76]. As a
result, users compensate for this and thus, they may touch different
virtual objects, but in fact, they have been redirected to the same
physical proxy (i.e., haptic retargeting [4]). However, there exist
limits to the extent to which such illusions can be used and still
remain undetectable for users [1, 14, 23, 76].

A large body of work has looked at how much discrepancy be-
tween the real and virtual world may be introduced while remaining
unnoticed by a user. These researchers have reported detection
thresholds’ for illusions such as hand redirection [6, 12, 17, 32, 76],
redirected walking [69], bi-manual hand redirection [27] and redi-
rected touch [14]; others have used the technique to simulate object
properties, for example weight [63] and size [7]. The consensus is
that it is possible to introduce discrepancies; however, two limita-
tions of these works are: (1) the thresholds do not seem to generalize
beyond the device and the effect, and (2) the thresholds seem to
be highly variable [23]. Our goal is to develop a reliable method
to detect when illusions have become noticeable beyond bespoke
situations and use cases. To do so, we investigate the potential of
physiological data which have previously been used in VR.

2.2 Physiological Data in Virtual Reality
Physiological data such as RSP, EDA and heart rate (HR), and so
on, have been used in many systems and situations.

For instance, the study by Egan et al. [16] looked at HR and
EDA as an objective evaluation metric to assess the quality of a VR
experience. Here, participants experienced the same virtual scene
through an HMD vs. a 2D monitor. Differences in participants’ HR
and EDA were correlated to the display condition (i.e. in VR vs.
on a 2D monitor), which was also correlated with their subjective
assessments of the experience. HR and heart rate variability (HRV)
have also been used to study motion sickness within the context of
long-term immersion in VR [31, 51]. Marchiori et al. [52] observed
an increase in HR in response to virtual scenes that were perceived
as less realistic according to participants’ questionnaire responses.
EDA is associated with experiencing emotional arousal [11]. Guna
et al. [31] studied changes in the skin conductance level (SCL), a
measure of EDA, to assess VR sickness, demonstrating a correlation
between SCL and participants’ subjective responses in a Simulator
Sickness Questionnaire [39]. On the other hand, respiratory rate
changes with respect to humans’ perceived stress, and therefore has

been studied when experiencing stressful scenarios such as flight or
roller coaster simulations in VR [18].

The aforementioned studies aim to establish an explicit objec-
tive metric, which is in line with our eventual goal of detecting
noticeable illusions and consequently allowing us to tailor VR illu-
sions to individuals’ perceptual boundaries [44]. To achieve this, we
first investigate whether noticeable illusions trigger physiological
responses. Most closely related to our work are EEG studies, con-
cerning Error-Related Potentials (ERPs) caused by visual and haptic
mismatches, which we discuss below.

2.3 Error-Related Potentials in Virtual Reality
In the HCI and VR community, ERPs have become a useful mea-
sure, allowing researchers to detect if participants experience an error
without directly asking them [43]. For instance, Si-Mohammed et
al. [65] showed that ERPs can be used to detect system errors in VR
such as background anomalies or tracking errors while interacting
with virtual objects. Gehrke et al. [24] used ERPs to detect visuo-
haptic mismatches by comparing three conditions when touching a
virtual cube: (1) visual but no haptic feedback, (2) visual feedback
+ vibrotactile feedback on the fingertip and (3) visual feedback +
vibrotactile feedback + electro-muscle stimulation. In 75% of the tri-
als the three feedback conditions matched the performed interaction;
however, in the remaining 25% the feedback was presented prema-
turely. Their results show that it is possible to distinguish matching
and mismatched trials using ERPs. In another study by Yazmir et
al. [74] ERPs were used in a visuo-haptic error induced task, where
participants used a Phantom haptic device to move a sphere horizon-
tally. To get to the target location, it was required to pass an obstacle
which momentarily obscured the sphere. In about 60% of the trials
they introduced a disturbance, i.e., the sphere was offset, horizon-
tally and/or vertically, ‘behind’ the obstacle. In a small study, they
collected evidence for a strong ERP shortly after the error. Padrao et
al. [58] studied the difference between self-generated and externally
imposed errors on the sense of agency when users were embodied by
a body avatar. Their work provides a strong foundation for our study,
because the externally imposed errors were provoked by moving the
virtual avatar hand in the opposite direction from the participant’s
real hand. The results showed a strong similarity to ERP signatures
related to semantic or conceptual violations (central cortex area).

This line of research shows that ERPs are promising to detect
errors and thus are a candidate to assess whether an illusion exceeds
an individual’s perceptual boundary—and therefore can be noticed.
Please note, illusions usually amplify or alter an interaction that a
user is already performing [1, 6, 7, 12–14, 17, 22, 23, 27, 63, 69, 76]—
instead of a sudden change in limb trajectory [58], premature haptic
feedback [24] or artefacts appearing in the environment [65], leaving
it as of yet unknown, when semantic violations occur during such
continuous illusions with constantly changing discrepancies.

3 HAND REDIRECTION ILLUSIONS

To investigate continuous illusionary mismatches that are caused
by exposing participants to noticeable discrepancies, we used a
hand redirection illusion. Here, we apply a continuous offset to
the position of the virtual hand from the position in the real world.
This can be done by changing the Control-Display (C/D) ratio, in-
troducing a gain factor scaling up participants’ virtual movements
(C/D > 1.0) [12, 76]. In this work, we only consider C/D ratio
gains > 1.0 because scaling up participants’ virtual movement (i.e.
making it faster) is more prevalent than scaling it down [22]. For
example, Fig. 1 illustrates the effect when moving a proxy from
a start to a target location. As a result, the virtual hand gradually
moves further away from the real hand. We included this illusion
in our study, since it is widely used in the community, and has
been used across a wide application spectrum such as extending
interactions [6, 17, 23, 27, 60, 76], increasing the resolution of haptic



proxies [1, 4, 5, 7, 12, 22], creating the sensation of weight [63] or
improving realism when using virtual tools [70]. It has also been
observed that users adapt to noticeable discrepancies, allowing them
to complete tasks effectively [42]. Thus, it may be valuable to under-
stand the process through which this adaptation happens, and when
we can reliably understand that participants have accommodated for
the discrepancy.

4 PHYSIOLOGICAL DATA & INTERACTIONS

In this work, we investigate if these noninvasive physiological mea-
sures may show a unique signature that can be used to reliably detect
hand redirection illusions that go beyond individuals’ perceptual
boundaries. Additionally, we also incorporate measures that are
linked to the interaction itself. Each of these measures has been
used in prior related work, and we order them based on whether the
measure was likely to provide a strong signal.

EEG: As discussed above, there exists a body of work which
uses EEG, specifically ERPs, to detect errors in VR. Commonly, the
aforementioned studies report an effect in the frontal cortex area
(FCz) between 100 to 360 ms after the stimulus onset [24,58,65,67].
We hypothesize that noticeable illusions show a similar ERP pattern
to errors in VR in the frontal cortex area, but in contrast to prior
work, it is unclear when the effect occurs (e.g., beginning vs. middle
vs. end of the movement phase).

Movement phases: Aimed movements can be separated into two
distinct movement phases, ballistic and (an optional) correction [46].
It has been shown that introducing discrepancies between the real
and the virtual world influences the execution of targeted movements,
because users need to compensate for the offset [22]. Therefore,
we expect that noticeable illusions also result in consistent shifts of
movement phases, leading to a much longer correction phase when
experiencing a noticeable hand offset, because users would need to
correct for the unexpected discrepancy.

EDA: Facing noticeable VR illusions may trigger physiologi-
cal arousal, and thus increases in the number of skin conductance
response (SCR) peaks. We formulated this hypothesis based on
findings reporting a correlation between greater self-reported VR
immersion scores and lower physiological (EDA) responses [16].

RSP: Performing precise interactions while coping with changing
visuo-motor discrepancies is a challenging task. Respiration appears
to be affected by various environmental stimuli in VR [18, 31].
Therefore, we hypothesize that changes in respiratory rate appear
when encountering detectable illusions as a direct response to the
unexpected mismatch.

ECG: Changes in HR/HRV measures can be observed when
studying long-term immersion [51] and therefore may also be ob-
served when exposing participants to a noticeable illusion, which
disrupts presence, resulting in a less realistic experience [68]. How-
ever, our work involves a comparatively short interaction, and it is
unclear whether this would affect the slow-adapting HRV measure.

5 EXPERIMENT

We conducted an experiment in a quiet room with air conditioning
to ensure a room temperature of 22–24°C, which is ideal for high-
quality physiological data acquisition. We used a non-distracting
virtual environment consisting of two tables, the experimental setup,
and an instruction screen. Participants remained seated on a chair
throughout the experiment. They wore an HMD, an EEG headset
and various sensors on their body. They were told to move the
virtual object forward until it matched a target location displayed in
the virtual world. After they successfully established the position,
they were required to maintain the position for two seconds before
moving the object back to the start location. We explicitly showed
participants the effect of C/D ratio manipulations multiple times
during the warm-up phase to ensure that they understood the effect.

5.1 Research Objectives

In this work, we investigate five research objectives.
R1: Are EDA, RSP and ECG responses triggered when experi-

encing a noticeable hand redirection illusion?
R2: Can interaction data reveal a noticeable illusion?
R3: Does a noticeable VR illusion show a distinguishable ERP?
R4: When in the interaction does a semantic violation happen?
R5: Do humans adapt to noticeable virtual/real hand discrepan-

cies over time, and if so, how long does it take for them to adapt to
these discrepancies?

5.2 Design

In this experiment we use a within-subjects design. We had four
study conditions: two Baselines, a Steady and a Mixed, each con-
sisting of 16 trials (see Fig. 2).

Baseline: Uses a 1-to-1 mapping between real and virtual move-
ment corresponding to a C/D ratio of 1.0. These conditions are used
to collect ground-truth data [24] about what participants experience
to be “normal”, which needs to be captured in VR [16]. By including
two baseline conditions, we are able to perform consistency checks
on our collected sample.

Steady: A fixed C/D ratio is applied that lies above an individual’s
perceptual boundary, i.e. they can detect the visuo-motor discrep-
ancy. To establish this per-participant ratio, we use a pre-calibration
described below. This condition enables us to address (R5), because
participants may adapt to the pre-calibrated threshold, i.e. they do
not notice the manipulation anymore, even tough they did initially.

Mixed: Randomly jumps between two C/D ratios (1:1 from Base-
line, and the one used in Steady). The system ensures an equal
occurrence of both C/D values, and only allows for a max. of three
consecutive trials with the same C/D ratio. With this, we want to pro-
voke a situation where a participant fails to adapt to the visuo-motor
discrepancy, because of the repeatedly changing C/D ratios.

Each of the Steady and Mixed conditions was paired with a pre-
ceding Baseline condition, respectively. This was done to ensure that
participants could establish a stable model of the environment, i.e.
re-calibrate themselves, before experiencing a condition with visuo-
motor discrepancies. To counterbalance the study, we alternated the
order of the two blocks A and B for each participant, resulting in a
factor two design (see Fig. 2).

5.3 Participants

We recruited 22 right-handed participants (five females, seventeen
males), aged 18–31 (mean: 25.05; SD: 3.05) from the general public
and the local university. Participants had a range of different edu-
cational and professional backgrounds including media informatics,
computer science, education, pharmacy, cybersecurity, entrepreneur-
ship, biomedical engineering, data science and artificial intelligence.
All participants reported normal or corrected-to-normal vision and
did not report any known health issues which might impair their
perception or proprioception. Nine participants had never used VR
before, ten had used it a few times (one to five times a year), no
one reported using it often (6–10 times a year), and three others
used it on a regular basis (more than 10 times a year). Participants
not associated with our institution received C15 as remuneration
for taking part in the experiment. The study was approved by the
University’s Ethics and Hygiene Board.

Baseline
16 trials

1-to-1 mapping

Steady
16 trials

personalized C/D gain 

Mixed
8 baseline

8 steady trials

randomized

Baseline
16 trials

1-to-1 mapping

Block A Block B

Participants
even P#: AB

odd P#: BA

Figure 2: Study design. Even participant#: AB, odd participant#: BA.



5.4 Apparatus
We used the apparatus consisting of an HTC VIVE Pro tracking
system with SteamVR (v.1.22) and OpenVR SDK (v.1.16.8). The
simple virtual scene was developed in Unity3D (v.2022.1.0). We
used an Acer Predator Orion 5000 PO5-615s offering an Intel®
Core i9 10900k CPU, 32 GB RAM and an Nvidia® GeForce RTX
3080 for running the experiment. We included an androgynous hand
representation without noticeable characteristics [64] to prevent
unwanted effects [57]. To avoid mismatches due to error-prone hand
tracking [65], the virtual hand was affixed to the virtual object, and
initially aligned with a participant’s real hand. The experimental
logic was implemented using the Unity Experiment Framework
(UXF v.2.1.1) [8] and the Unity Staircase Procedure Toolkit [78].

5.4.1 EEG Setup
EEG data was recorded from 32 actively amplified electrodes using
BrainAmp DC amplifiers from BrainProducts. Electrodes were
placed according to the international 10–20 system. We applied
conductive gel to establish a proper connection between electrodes
and scalp, and brought impedance of all active electrodes below 20
kOhm, before continuing in the experiment. Impedance was verified
before and after the study. EEG data was recorded with a sampling
rate of 500 Hz. The validity of EEG recordings with an HMD has
been verified previously [34].

5.4.2 Biosignal Setup
To collect ECG, RSP, and EDA data, we used biosignalsplux’s multi-
sensor research platform together with the OpenSignal software,
allowing for medical-grade data acquisitions. The corresponding
sensors were attached to the human body using six pre-gelled &
disposable electrodes. Signals were streamed at a 500 Hz sampling
rate and 16-bit resolution per channel. Overall, participants wore
four sensors consisting of (1) an ECG sensor with an Einthoven
Lead I setup, (2) a piezo-electric respiration (PZT) sensor between
the 8th and 10th rib, (3) a two electrode EDA sensor attached to
participants’ palms and (4) a reference on their right collarbone. We
synchronized tracking, EEG and biosignal data, and events of the
study procedure using labstreaminglayer [47].

5.5 Procedure
Participants were given a general introduction to the study, i.e., we
showed them the setup and explained each sensor to make sure
that they were comfortable having their physiological data tracked.
Next, we gathered participants’ consent and asked them to fill in a
demographics questionnaire. We then started with the procedure
of attaching the physiological sensors. There were always two
experimenters available, one identifying as male and another one
as female. Participants could choose who should assist during the
procedure to ensure proper placement of the sensors. Next, both
experimenters fitted the EEG cap on participants’ heads. Overall,
the preparation time was about 40 minutes.

Following this, participants were placed in the VR environment
and guided through an open-ended practice round, showing them the
effect of C/D ratio manipulations (i.e., the virtual hand moves faster
than their real hand). By doing so, we allowed them to familiarize
themselves with the task and the system. Once they felt comfortable,
we moved to the second phase, where we calibrated their personal
detection threshold as described in the next section.

Participants were instructed to grasp the proxy object as visually
indicated and to maintain this pose throughout the experiment. They
were told to sit comfortably and only move the object to the tar-
get position with a consistent and comfortable speed. The system
monitored that they stayed within a reasonable time range. Once
they reached the goal position, the object needed to remain in that
position for 2 seconds, before the visual start target appeared again.
Participants were required to stay within a 5 mm distance (C/D ratio

= 1.0) for the countdown to remain active. To account for increased
task difficulty caused by greater C/D ratios, the threshold distance
was adjusted using the Fitts’s law method [49]. Participant and
experimenters were not allowed to talk during each trial, to avoid in-
terrupting the continuous docking task or introducing artifacts in the
data. To minimize carry-over effects and cope with proprioceptive
fatigue [62], participants took a break after each study conditions,
and filled in a questionnaire in VR. On average, the data-collecting
process was 25 min long, during which participants were not allowed
to remove the VR headset. The total experiment took about 90 min.

5.6 Determining Individuals Perceptual Boundaries

To tailor our study to each participant’s individual perceptual bound-
aries, we calibrated their personal detection thresholds, which were
then used in the mixed and steady conditions. This was done be-
cause prior work demonstrated large differences between detection
thresholds, ranging from 5% to 67%, may be undetected [23]: what
is an “obvious” C/D manipulation for one person may not be per-
ceivable by another. To achieve this, we used a 3-up-1-down inter-
leaved staircase procedure, exposing participants to different stimuli
(C/D-ratios) repeatedly. Using an unequal step size, we target the
Detection Threshold (DT) [38, 40], meaning that a participant can
detect the manipulation 75% of the time. Since the procedure can
target different probabilities, we can compute the required step-size
(ψtarget ) for the step Up(∆+)/Down(∆−) method and DT = .75 as
follows [38]:

ψtarget =
∆+

∆++∆− => ∆−

∆+ =
1−ψtarget

ψtarget
=

(1−0.75)
0.75 = 1

3
The interleaved staircase uses a descending and an ascending se-

quence, and randomly assigns the next trial to one of the sequences.
The procedure increases the next stimulus if a participant fails to de-
tect the current stimulus, and decreases the next stimulus if the user
detects the manipulation. A directional change within a sequence
is noted as a reversal point (see Fig. 3, left). We used the number
of reversal points (r=3) in each sequence as a convergence criterion.
Based on previous studies in this field, we chose 1.0 and 2.0 for
our range of manipulation factors with a 0.1 step size [6, 22, 23].
Following our pilot tests, we selected 1.0 (↑ asc.) and 1.8 (↓ desc.)
as the starting values for the procedure to allow for quicker conver-
gence. Finally, we added a relative 25% to the personalized detection
threshold and since perception is non-linear [19], this ensures that
the C/D gain is always noticeable.

5.7 Data Collection

We collected data from nine sources: a pre-study questionnaire for
demographic information; EEG, ECG, RSP, EDA and interaction
data; system logs (including trial times, object position and orien-
tation, and velocity using UXF [8]); field notes and observations;
and a subset of the avatar embodiment questionnaire [29] after each
condition in VR using the VRQuestionnaireToolkit [21].

5.7.1 Avatar Embodiment Questionnaire

To establish a basis for overall analysis, we first need to ensure that
participants feel that the avatar is easily controlled, and that the
hand redirection is noticeable. Therefore, we use a subset of the
complete avatar embodiment questionnaire [29] concerning only
body ownership, agency and location, resulting in 10 questionnaire
items. Responses were collected on a 7-point Likert scale (-3 =
strongly disagree, 0 = neutral, 3 = strongly agree).

5.8 Analysis

For the analysis, our data was split into epochs corresponding to
the conditions and the trials within them. Then, we pre-processed,
filtered and analyzed the data using the method described below.



5.8.1 EEG

We utilized the EEGLAB [71] and MoBILAB [72] toolboxes inside
the MATLAB environment for our analysis. We followed Gehrke
et al.’s [24] methodology to pre-process, filter and analyze the EEG
data and extract ERPs. To summarize, raw EEG data was re-sampled
to 250 Hz, high-pass filtered at 1 Hz and low-pass filtered at 125
Hz. Then, the data was re-referenced to the average of all channels,
followed by applying ICA to reject eye and line noise activity.

Extracting ERPs. To obtain the ERPs (shown in Fig. 5 right), we
filtered the EEG data with a 0.2 Hz high-pass and 35 Hz low-pass
filter. Then we created epochs from -0.2 seconds to 0.9 seconds
around the MovementStartEvent, i.e., past the jitter threshold. To
guarantee robust data, we rejected 10% of the noisiest epochs [30].
We focused our analysis on one electrode, FCz, located on the
forehead, which previous studies found to be a strong predictor
for visual and haptic mismatches [24, 65, 67]. Furthermore, we
automatically extracted the ERP negativity peaks and their latencies
by locating the minimum peak in a 400–700 ms time window after
the MovementStartEvent, using a 10 Hz low-pass filter. The time
window was derived from visual inspection of the mean difference
ERP wave in Fig. 5 left.

5.8.2 Biosignals

We used NeuroKit2 [50] with its automated pipeline for pre-
processing ECG, RSP and EDA signals.

ECG: Raw data was cleaned using a fifth order 0.5 Hz high-pass
Butterworth filter and powerline filtering at 50 Hz. R peaks were
extracted using NeuroKit2’s default method.

RSP: Raw data was cleaned using linear detrending followed by
a fifth order 2 Hz low-pass IIR Butterworth filter. To extract RSP
peaks, we applied Noto et al.’s [56] analysis method.

EDA: Raw data was cleaned using a fourth order 3 Hz high-pass
Butterworth filter. We accepted SCR peaks below the rejection
threshold set relative to the largest amplitude in the signal (min 0.1).

Finally, the results were then processed for descriptive and/or
statistical analysis.

5.9 Results
In this section, we investigate whether all participants show consis-
tent and systematic responses across the different modalities, seeking
to understand whether the monitored measures show a consistent
effect across all participants when knowingly exposing them to no-
ticeable virtual/real hand mismatches. Here, the goal is to distinguish
between VR experiences that do vs. do not use noticeable illusions.

Our data analysis is split into five parts based on the data source;
for each, we discuss which research objective the data source ad-
dresses. First, we report the results from the the personalized de-
tection thresholds procedure. Next we analyze the questionnaire
responses to ensure that the avatar did not consciously create disso-
nance for our participants. Then, we look at the EEG data followed
by the interaction data, and finally we report our results from the
EDA, RSP and ECG data analysis. The biosignals analysis excludes
P9 due to data loss, and the EEG analysis excludes participants 1–4
because of an experimenter error with the electrode setup. Statistical
tests were chosen based on parametric test assumptions at α = .05,
and we use outlier removal with the box plot method.

5.9.1 Personalized Detection Thresholds

We collected 277 responses through the interleaved-staircase proce-
dure. On average, it took participants 12.6 (SD: 2.6) trials to reach
convergence. For each participant, we obtained one personalized
detection threshold by averaging the last three reversal points within
the ascending and descending staircase sequence [22, 79]. The re-
sults can be found in Fig. 3. The average detection threshold was
1.7 (SD: 0.12). All 22 staircase plots are available in the appendix.
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descending sequence

Trials

Figure 3: Detection threshold distribution and 3up-1down staircase.

5.9.2 Avatar Embodiment Questionnaire
Here, we analyze the responses from the virtual embodiment
questionnaire, namely the items concerning body ownership,
agency/motor control and location, by running Friedmann tests on
the aforementioned three categories. The results are depicted in
Fig. 4; all questionnaire items showed a main effect. Consequently,
we ran multiple pairwise comparisons using paired Wilcoxon signed-
rank tests and Holm adjustments.

Body ownership. One can have high body ownership over, e.g., a
virtual hand that is dislocated from the position of the real hand when
visuo-tactile stimuli are provided synchronously [29]. In the case
of noticeable hand redirection gains, the initial position of the hand
is correctly rendered in place, but once a user starts the movement
a gradually changing offset is applied, leading to a break in body
ownership. Q1 - “I felt if as my virtual hand was my real hand”
supports this by showing significantly greater scores in both baseline
conditions compared to the mixed condition.

Agency/motor control. These questions target whether partici-
pants can move their virtual body parts in a natural way. Interestingly,
the baseline conditions showed significantly greater scores than the
mixed condition on the question Q4 - “It felt like I could control the
virtual hand as if it was my own hand”, but this was not the case for
the steady condition. This shows that the random jumps between
gain factors made it difficult for participants to predict and control
their movements accurately. The steady condition however, lies
between baseline and mixed, suggesting that participants adapted to
the (large, but consistent) offset (R5).

Location. Here, the differences between the conditions became
most visible in participants’ ratings. For example, the significant
difference between baseline and mixed as well as steady and mixed
on Q8 - “I felt as if my hand was located where I saw the virtual
hand” suggests that participants clearly noticed the positional offset
in the mixed condition. Interestingly, participants frequently asked:
“I am not sure how to respond, because at the beginning it was faster
(the effect of a high C/D ratio), but at the end it felt normal” (P11)
after they finished the steady condition, showing that they adapted
to even higher C/D ratios (R5).

Summary. The results demonstrate that: (1) we successfully
established a solid baseline in our experiment with high body own-
ership, agency and location scores and (2) the induced hand redirec-
tion illusion was noticeable for participants, significantly affecting
their questionnaire responses. This ensures that the data analysis
below can be linked to the effects we aim to investigate. Next, we
report the result from our EEG analysis.

5.9.3 EEG Analysis
The EEG analysis allows us to study research objective (R3), does
a noticeable VR illusion show a distinguishable ERP, and (R4), at
which point in the interaction does a semantic violation happen. We
examined the mean ERP amplitudes across all participants depicted
in Fig. 5, which shows a strong prediction error negativity at about
420 ms latency throughout all conditions and a second error neg-
ativity around 630 ms after participants’ movements started, but
only in the mixed and steady conditions. We observe that main
positive components begin to accumulate at 800 ms. Interestingly,
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Figure 4: Responses from the avatar embodiment questionnaire items. *** = p < .001; ** = p < .01; * = p < .05 (Holm-adjusted).
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Figure 6: Negativity peak amplitudes trend, severity and latency
across conditions. *** = p < .001.

there appear to exist two negativity peaks in the mixed and steady
condition. Hence, we examined individuals’ ERP plots, but found
that the second negativity peaks are not a unique ERP signature of
these conditions, allowing us to distinguish them from the baseline.
Rather, it reflects the temporal differences of participants noticing
the discrepancy. This is a reasonable observation, because partici-
pants experienced different C/D manipulations and moreover, most
likely also differ in the perceptual abilities to detect them. Also,
when investigating participants’ individual ERP plots, for the vast
majority, we observed the greatest prediction error negativity in the
time window from 420–630 ms latency (see Fig. 5). We conclude
that participants may detect obvious hand redirection illusions
within the first 1

3 of the total movement time (on average 1.3
seconds) across conditions, taking into account that ERPs occur
between 100–360 ms after stimulus onset [24, 58, 65, 67] (R4).

Since all conditions showed error negativity between 420–630 ms,
we investigated the severity of the visuo-motor conflict by computing
and analyzing the global minimum prediction error amplitudes and
their latencies [24]. We found a main effect for the amplitude of
a global minimum χ2(3) = 22.482, p < .0001 between our four
study conditions. The mixed condition showed significantly stronger
prediction negativity than all other conditions as illustrated in Fig. 6,
right. The strength of global minimum prediction error amplitudes in
the mixed condition is comparable to the visual mismatch negative
amplitude reported by Gehrke et al. [24], demonstrating the validity
of the results. Second, as shown in Fig. 6, right, we observed
no significant differences χ2(3) = 3.988, p = 0.262 for the peak
latencies across the four conditions. We conclude that it is possible

to distinguish the mixed from the other conditions based on error
negativity peak amplitude, i.e. the severity of the mismatch is
reflected in the negativity (R3).

Next, we explore ERP negativity in the steady condition to con-
sider research objective (R5), whether humans adapt to noticeable
virtual/real hand discrepancies. We investigate the distribution
of negativity peaks within our conditions across the 16 consec-
utive trials per participants. We observed much greater negativ-
ity in earlier trials, which decreases throughout the steady condi-
tion, quickly matching the baseline after trial 4 and reaching a
stable plateau between trial 8 and 12 (see Fig. 6). We a ran a
Spearman correlation analysis on the negativity peaks along the
16 trials for each condition, and found a small positive correlation
in the steady (peakss(2263338) = .17, p = .006) and the baseline
(peaksb(2336333) = .15, p = .013) conditions, but not in the mixed
(p = .778) and baseline 2 conditions (p = .606). By trial 4, there
was almost no difference between steady and baseline conditions.
Our results suggest that there is a possibility of almost imme-
diate adaptation to hand redirection i.e., participants quickly
re-calibrate themselves to the given discrepancy.

Finally, we were specifically interested in the mixed condition,
because participants reported that this condition was “...all over the
place” (P18) and was often perceived as “...movement was either
too fast [C/D gain > 1] or too slow [C/D gain = 1].” (P1). We
extracted the baseline trials from the mixed condition, and re-ran
the analysis on the global minimum prediction error amplitudes
χ2(3) = 213, p < .001. The mixed baseline showed significantly
greater error negativity than baseline (p < .001) and baseline 2
(p < .001). Thus, we conclude that even the 1-to-1 mapping
can be experienced as disruptive if participants had previously
adapted to a different C/D ratio.

Summary. We found that all conditions (incl. baseline) provoked
error negativity consistently between 420–630 ms and thus, we
conclude that participants notice errors early in their movements.
Additionally, the minimum prediction error amplitudes allowed us to
distinguish the mixed from all other conditions. Further, participants
seem to adapt quickly to the discrepancy, reflected in decreasing
error negativity. In the following we look at the interaction data.

5.9.4 Interaction Data

We analyze how noticeable illusions affect two main movement
phases: ballistic and correction. We hypothesized that C/D ratio
manipulations increases the relative duration of the correction phase
and shortens the ballistic phase, because participants start to com-
pensate for the offset. There exist variations on how these phases are
defined, but we follow Nieuwenhuizen et al. [55] to obtain ballistic
and correction phases. According to Liu et al. [45]’s recommenda-
tion, we analyze movement phases across two dimensions, distance
and time, to achieve a more encompassing view on the interaction.

Movement profiles: Our central interest lies at the transition
point between the ballistic and correction phases, which we nor-
malized (by travel distance and time) to account for differences
in task completion time and total distance travelled. For analy-
sis, we computed movement profiles for all 1408 interactions (see



appendix). We ran a Friedman test on the normalized (time and
distance) transition points. The Friedman test revealed a main effect
for both independent variables, distance χ2(3) = 53, p < .001 and
time χ2(3) = 53, p < .001. Hence, we conducted multiple post-hoc
pairwise Wilcoxon rank tests with Holm adjustments (see Fig. 7).

Time. The results show a significantly shorter ballistic phase in
the mixed, compared to both baselines (p < .001) and the steady
condition (p < .001). However, we could not identify an effect be-
tween the steady and baseline conditions on the time dimension. The
total task completion time χ2(3) = 176, p < .001 was significantly
faster in the steady condition than in all other conditions, which
is not surprising, because we compensated for the increased task
difficulty using Fitts’s law.

Distance. On the other hand, distance results reveal that both
mixed and steady conditions have significantly later transition points
(p < .001). As illustrated in Fig. 7, we observed high levels of
participants over- and under- shooting the target due to unexpected
slow or fast movements. In contrast, baseline conditions showed
consistent transition points, before or right at the required distance,
indicating high accuracy. Looking at the total distance travelled
χ2(3) = 213, p < .001 reveals that significantly more distance was
covered in the steady and mixed condition than in both baselines.
Again, this demonstrates the under- and overshooting in combination
with many corrections due to erroneous movements, in contrast to
the baseline conditions in which overshooting was nonexistent.

With this in mind, we investigate whether participants adapt to vir-
tual/real hand offsets (R5) by running a Spearman correlation analy-
sis on the normalized transition points alongside the 16 trials for each
condition. We found a medium negative correlation in the steady
condition on (distancer(20) =−.37, p < .001), and a positive corre-
lation for (timer(20) = .25, p < .001), both indicating that transition
points move closer to “normal”, i.e., to both baseline conditions, with
each trial. In contrast, this correlation was not present in the mixed
(timer(20) = .08, p = .148;distancer(20) = −.09, p = .106) and
baseline 2 conditions (timer(20) = .07, p = .219;distancer(20) =
−.02, p = .713). However, baseline showed a weak correlation
(timer(20) = .12, p = .034;distancer(20) = .16, p = .006) which
may be attributed to learning effect, because it was the first study
condition. Fig. 8 illustrates how P4 adapts to a constant C/D gain in
the steady condition with a large correction phase at the beginning
(trial 1), and decreasing correction phases in trial 4, 8 and 12 until
the end of the study condition. This is in line with our results from
the questionnaire and EEG analysis (R5).

Analogously to the ERP analysis, we extracted baseline trials
from the mixed condition and re-ran the analysis. Mixed baseline
had shorter and earlier transition points than baseline (timep =
.004;distancep = .003) and baseline 2 (timep < .011;distancep <
.001). Again, this provides supporting evidence that there is no
“absolute” baseline, but instead participants quickly adapt to the
offsets, and thus, how an illusion is perceived is relative to a user’s
most recent experience with this kind of interaction (R5).

Summary. Movement profiles, time and distance appear to be
reliable metrics to distinguish unnoticeable vs. noticeable hand
redirection offsets, because these are directly affected by the per-
formed interaction (R2). Further, we found that participants adapt
to consistent offsets in the steady condition (R5), which was not the
case in the mixed condition.

5.9.5 EDA, RSP and ECG Data Exploration

EDA: Participant 15, 17 and 20 were omitted from the analysis,
because it was not possible to compute SCR peaks, possibly due
to noisy data. The corresponding raw/cleaned data plots of all
participants can be found in the appendix.

To investigate our hypothesis, that the total number of SCR peaks
increases in the mixed condition because it creates arousal, we ran
a repeated-measures ANOVA. However, we did not find a main
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Figure 7: Time and real-world distance needed to reach the virtual
target. **** = p < .0001 (Holm-adjusted).
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Figure 8: Movement normalizes and becomes more accurate in the
steady condition over time. Correction phase becomes shorter.

effect on the total number of SCR peaks across our study conditions
(F(3,48) = 2.025, p = .123). We further analyzed the data by exam-
ining the SCR plots. Overall, we observed that the majority of SCR
peaks seem to appear at the beginning of a study block, which might
suggest that this phase is used for initial self-calibration—even in
the baseline condition, although there was a break and a question-
naire between study conditions. To further investigate this, we split
each study condition into quartiles, analogous to an extreme groups
approach [61], and then computed the number of SCR peaks for
each quartile/condition. The results are depicted in Fig. 9, showing
a downward trend in the steady condition similar to the baseline,
especially in the 3rd quartile (trial 9 to 12), but an equal distribution
of SCR peaks in the mixed condition.

Summary. Even though we could not identify a significant
effect on the overall number of SCR peaks, our results may be
interpreted as evidence that participants adapt to even larger
offsets (R5), but fail to acclimate to the constantly changing off-
sets in the mixed condition, reflected in the distribution of SCR peaks.

To the best of our knowledge, we are the first to explore the re-
lationship between ECG and RSP in the context of VR illusions.
Therefore, hypothesis testing using statistical methods is inappro-
priate; instead, we use a descriptive and exploratory data analysis,
splitting the data into four epochs corresponding to our four study
conditions. We performed an interval analysis, computing the most-
common RSP, time, frequency as well as non-linear ECG indices
accordingly to Makowski et al. [50] and Pham et al. [59]. Overall,
we obtained 86 indices that may be selected for a statistical analysis
or machine-learning approaches. Here, we only report a subset of
our results. However, we make the data set publicly available to
inform future research hypotheses and studies.

RSP: First, we descriptively analyze respiration profiles, because
in our study, we observed that participants’ responses differed dra-
matically. For instance, in the mixed condition (see Fig. 12, bottom),
P11 held his breath for several seconds followed by heavily in-
/exhaling, because he was focused on matching the target and start
position while coping with the effects of frequently changing C/D
ratios. On the other hand, P5 was “surprised” when the C/D ratio
changed, triggering smaller exhales corresponding to the trials, lead-
ing to a completely different breathing pattern, demonstrating how
different individual participants’ reactions can be. However, most
participants seem to fall in the latter category, according to RSP



Time

        

        

        

        

      

     

Time

TrialStart

C/D > 1.0

C/D > 1.0

C/D = 1.0

Figure 9: Top: phasic component during baseline, steady and mixed
condition. Bottom: number of SCR peaks separated in quartiles.

rate and amplitude measures, when comparing mixed with baseline
conditions. Overall, there seems to be a trend towards an increase in
RSP rate and more shallow breathing in the mixed condition.

Principal components analysis. Next, we computed 22 common
RSP indices, and we performed a dimensional reduction using prin-
cipal components analysis (PCA) in order to determine the number
of components that are needed to describe the variance in the data.
In the next step, we check whether the PCs reveal clusters within
our collected sample, allowing us to distinguish study conditions.
The PCA showed that 65.2% of the variance can be explained by
PC1 and PC2. Five additional PCs are needed to reach the often-
propagated total variance of s% for exploratory data analysis (see
Fig. 10). However, when inspecting the biplots, we see that even the
most powerful principal components PC1 and PC2 do not indicate a
distinct separation in clusters that correspond to our study conditions
(see Fig. 10). Although this is desirable for both baseline conditions,
it shows that there seems to be no consistent pattern within our
collected data which can be linked to our study conditions.

Standardized mean difference. Next, we compared standardized
mean difference between conditions using paired Cohen’s d. A d
of .5 is generally considered a medium effect size, meaning that
69.1% of one group will be above the mean of the other group
(Cohen’s U3). Six indices between baseline and mixed conditions
were above d = .5. Additionally, the RSP Amplitude Mean metric
still shows noticeable mean differences between baseline and steady
conditions. Fig. 11 shows the results of the dimensional reduction
in combination with d scores above .5 in at least one comparison.

Summary. Exposing participants to a noticeable VR illusion
seems to have an impact on respiration. That being said, it is un-
clear whether changes in respiration are consistent following our
observations and the PCA analysis. However, a combination of
RSP Amplitude Mean and RSP Rate appear to be worth investigat-
ing in the future (R1).

ECG: We conducted a similar exploratory analysis for the ECG

Figure 10: Biplot: of PC1 and PC2 describing the greatest variance in
the data. Scree plot: number of PCs needed to describe variance.
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Figure 11: RSP Cohen’s d in combination with dimensional reduction.

data. We computed 64 common time, frequency, and non-linear ECG
indices. Our goal was to narrow down potentially useful indices,
providing as many insights into our data as possible.

Principal components analysis. A PCA on this data showed that
51.7% of the variance can be explained by PC1 (40.4%) and PC2
(11.3%). Five additional PCs are needed to reach a total variance
of 80%. However, similarly to the RSP data, PC1 and PC2 do not
allow a distinct separation in clusters that correspond to our study
conditions (similar to Fig. 10; please see plot in appendix).

Standardized mean difference. We again computed Cohen’s d
scores. The first baseline against the mixed condition showed strong
effects across the two indices: HRV SD1SD2 (d = .854), describing
long and short-term HRV variance, as well as HRV CSI Modified
(d = .835). Further, we found that the standard deviation of RR-
intervals (SDNN) showed consistent d scores across all conditions,
especially in the mixed, but also the steady condition, compared
to both baselines. Because SDNN is a known stress indicator, we
specifically looked at other stress-related HRV indices, since coping
with constantly changing C/D ratios in the mixed condition could
have an effect on them. However, other well-studied stress indices
such as RMSSD remained consistent across all study conditions and
therefore did not suggest any differences. Fig. 13 shows the resulting
d scores of each variable that contributed to the first seven principal
components with at least a medium effect size of d > .5.

Summary. We descriptively analyzed ECG data, laying the foun-
dations for future research that aim to detect noticeable VR illusions.
We provide an overview of common ECG indices, helping the com-
munity to make informed decisions about research hypotheses by
outlining the most promising ECG features. Specifically, the stress
related index SDNN, as well as the SD1SD2 and CSI Modified in-
dices, appear to be promising. However, it must be noted that based
on our PCA analysis, there exist inconsistencies in participants’
ECG responses within our collected sample (R1).

5.9.6 Summary of Results
R1: We investigated EDA, RSP and ECG, providing an overview
of the most promising indices that may be selected for future
hypothesis-driven studies. Our analysis revealed inconsistencies
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(bottom) to frequently changing C/D ratios in the mixed condition.
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Figure 13: ECG Cohen’s d in combination with dimensional reduction.

for RSP and ECG, while simultaneously demonstrating substan-
tial individual differences in participants’ physiological responses.
Hence, at this point, we are unable to conclude if these measures
can or cannot be used to distinguish study conditions. Our analysis
on the SCR peaks was inconclusive, but we identified a downward
trend in SCR peaks except in the mixed condition, which seems to
indicate that participants adapted to the discrepancy.
R2: Interaction data, specifically the analysis of movement phases
and transition points, showed a significant difference that could be
systematically linked to our study conditions.
R3: ERPs were found in all conditions, but differed in their am-
plitudes and negativity, which allowed us to distinguish the mixed
from the other conditions. The steady condition seemed (except for
the initial strong negativity during the first four repetitions) mostly
indistinguishable from the baseline conditions.
R4: The ERP analysis suggests that noticeable visuo-motor discrep-
ancies were detected early after movement start, which is supported
by the movement analysis, showing very early transition points from
ballistic to correction phase in the mixed and steady conditions,
caused by participants compensating for the discrepancy.
R5: We found overwhelming evidence that participants adapted to
the discrepancies in the steady condition through analyzing partic-
ipants’ comments, questionnaire, EDA, movement and EEG data.
The exact number of repetitions needed most likely depends on the
individual. However, our data suggest that somewhere around repeti-
tion 4–8, participants were adapted to the discrepancy. Interestingly,
steady and baseline conditions showed very similar patterns across
all measures, suggesting that participants used the initial phase for
self-calibration and to establish a robust model of their environment.

6 DISCUSSION & LIMITATIONS

6.1 Combining Physiological Modalities & Individuals
In this work, we investigated a set of physiological measures that we
intend to expand, including eye blinks, pupil dilation and gaze. The
next logical step is to combine multiple modalities for classifying
whether a visuo-motor discrepancy was noticed or not. Just as prior
research has found that detection thresholds differ between individu-
als [22], we observed that our participants’ individual physiological

responses differed. Similarly, we expect that each user would have
their own personalized classifier. Based on our data, it is unclear
whether these responses would remain stable—an individual may,
for instance, differ from one day to another.

Running an analysis on individuals across time requires substan-
tially more data. This is difficult because of the trade-off between
collecting sufficient samples versus proprioceptive fatigue [62]. It
is thus possible that the lack in consistency in our data may be at-
tributed to the small sample size; however, our effect-size analysis
provides a foundation and a solid starting point for future studies.

6.2 Validity & Applicability of EEG Results
Our results confirm that the frontal cortex area, especially the FCz
electrode, and the concept of ERPs [24, 65, 67] can be used to detect
noticeable visuo-motor discrepancies. However, previous results
show a more consistent ERP mean curve, which can be explained by
the distinct events used in their studies. Instead, our work introduces
gradually increasing offsets, where the precise time of violation is
unclear and thus, temporal shifts in the ERP curves occur. To our
surprise, even the baseline conditions showed weak error negativity,
which is reduced over time (see Fig. 5) and therefore may be caused
by the visualization itself [67] (i.e., the simple floating hands com-
bined with reduced depth perception in VR). Other measures than
ERPs to detect a mismatch also exist and could be used for compar-
ison with our results. For instance, a haptic delay has been shown
to significantly increase beta and theta band activity [2]. Another
interesting aspect is the indistinguishability between the steady and
baseline conditions, when compared to the questionnaire responses.
We assume that the questionnaire responses were given by partici-
pants averaging their experiences in the steady condition, leading to
a score in-between those of the baseline and mixed conditions. In
contrast, the EEG results perhaps give a more direct estimate of how
the illusion was perceived, also showcasing the quick adaptation.
Lastly, determining the time (R4) when a violation gets noticed is
a crucial aspect for many techniques that aim to increase detection
thresholds for VR illusions (e.g., by utilizing eye blinks [77]).

6.3 Beyond Noticeable & Hand Redirection
Our long-term goal is to tailor illusions to an individuals’ perceptual
boundary [23, 44]. In this work, we used discrepancies that are obvi-
ous to the user; however, more conservative studies found that the
detection thresholds are much smaller [76]. Therefore, we need to
investigate discrepancies which are not only above, but also around
and below participants’ thresholds. Future work needs to investigate
whether unnoticeable discrepancies trigger similar effects, allowing
us to differentiate them. In our vision, VR designers could already
tell when they are reaching perceptual boundary of an individual,
by staying just below the threshold. Therefore, we need to study
more realistic settings and scenarios to investigate the approach’s
robustness. Finally, we also plan to apply this method for different
types of VR illusions such as redirected touch [42].

7 CONCLUSION

In this work we investigated physiological and interaction data to im-
plicitly detect noticeable movement discrepancies between a user’s
real and virtual hand by running a study with 22 participants. The
results suggest that EEG is a reliable method to detect visuo-motor
discrepancies. Furthermore, movement phases appeared to be di-
rectly affected by noticeable discrepancies. We provide the first
investigation of ECG and RSP in relation to perceptual VR illu-
sions, and outline recommendations for indices that appear to be
worth studying in dedicated studies. We also found that participants
quickly adapted to larger discrepancies, and whether a discrepancy
remains unnoticed primarily depends to their most recent experience
with this kind of interaction. Our work marks a first step towards
VR experiences that include personalized VR illusions.
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