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Figure 1: (A) Stargazer is a novel approach for how-to video creation using a camera robot. (B & C) Stargazer’s camera automati-
cally follows the region of interesting, such as the hands of instructor who is holding the cover for a lamp. (D & E) Stargazer 
also detects the instructor’s signals, such as pointing gestures, and responds by focusing on the light bulb. 

ABSTRACT 
Live and pre-recorded video tutorials are an efective means for 
teaching physical skills such as cooking or prototyping electron-
ics. A dedicated cameraperson following an instructor’s activities 
can improve production quality. However, instructors who do not 
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have access to a cameraperson’s help often have to work within 
the constraints of static cameras. We present Stargazer, a novel 
approach for assisting with tutorial content creation with a cam-
era robot that autonomously tracks regions of interest based on 
instructor actions to capture dynamic shots. Instructors can ad-
just the camera behaviors of Stargazer with subtle cues, including 
gestures and speech, allowing them to fuidly integrate camera 
control commands into instructional activities. Our user study with 
six instructors, each teaching a distinct skill, showed that partic-
ipants could create dynamic tutorial videos with a diverse range 
of subjects, camera framing, and camera angle combinations using 
Stargazer. 
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1 INTRODUCTION 
People use how-to videos, both live and pre-recorded, to learn new 
physical skills [37], ranging from repairing a broken keyboard to 
learning digital fabrication [42]. In most how-to videos for physical 
skills, the instructor demonstrates step-by-step how to complete the 
task [14]. As these steps may involve activities at varying locations 
in varying levels of detail, a single, fxed camera often cannot record 
every step with the desired clarity [39]. This necessitates frequent 
changes to camera parameters, including viewpoints, angles, and 
zoom levels. 

Professional video productions, such as cooking and home im-
provement shows, employ several dedicated camera operators who 
actively re-position cameras and adjust their parameters in response 
to the instructor’s actions. However, such resources are not avail-
able to most instructors; instead, these rely on one or more pre-
confgured fxed cameras. Although fxed camera setups can be 
re-confgured during recording, instructors need to stop what they 
are demonstrating (e.g., chopping vegetables) to manipulate the 
camera. This disrupts the demonstration, increasing the instructor’s 
workload. It also requires more post-processing to combine clips 
flmed with diferent camera setups. 

Both flmmakers and researchers have explored the idea of camera-
manipulating robots as an alternative to human operators [1, 27]. 
Recent camera robots (predominantly drones) can autonomously 
track moving subjects [6, 24, 41]. However, it remains a challenge 
for the user being flmed to control the camera robots’ behaviors 
while performing other activities, such as demonstrating a physi-
cal process. Conventional interfaces for robot control employ joy-
sticks [52], gestures [49], and speech [16]—all of which require 
dedicated input actions—that disrupt instruction delivery. If not 
edited out, such disruptions might split audience’s attention and 
hinder learning [9], but post-processing adds to instructors’ eforts. 
Recent user interface research has explored triggering on-screen 
visual efects through presenters’ gestures and speech [22, 32, 48] 
that are part of the presentations. Our approach in this work is to: 
(1) identify the kinds of camera shots that how-to videos use and (2) 
direct camera operations in a non-disruptive manner by relying on 
the communicative signals that instructors already use to address 
their audience during demonstrations. For instance, an instructor 
may point to a part of an object to emphasize it, use speech to guide 
the audience’s attention, or wave to introduce themselves. 

We present Stargazer, a novel approach that uses a camera robot 
to capture dynamic how-to videos for tabletop-scale physical tasks 
(Figure 1A). Instructors can use subtle signals to control the high-
level behavior of the camera, such as the current region of interest 
and camera framing, in real-time. Stargazer’s camera autonomously 
tracks and captures the region of interest (Figure 1B-E). Note that 
our goal is not to build a fully automated robot that understands 
every nuance of human communicative behavior; instead, we aim 
to explore a vocabulary of controls that can support the necessary 
camera work needed to create informative tutorial videos and can 
be fuidly blended into normal instruction activities. 

Based on an analysis of 50 how-to videos under three popular 
categories, we identifed three common types of shots and three 
types of camera parameter control that the robot should support. 
Instructors control shot types and camera parameters through ges-
tures and speech that they commonly use to guide the attention 
of their audience. Stargazer locates the subject of interest in each 
type of shot and smoothly tracks them. 

We invited six participants, including two professional flmmak-
ers, to capture how-to videos with Stargazer for a physical task of 
their expertise. All participants were able to create videos without 
needing any dedicated controls other than the cues aforded by 
Stargazer and were satisfed with the quality of the video produced. 
Based on participants’ think-aloud comments on the produced 
videos and post-study interview data, we identify opportunities 
and challenges for collaborative video capture with robots. 

2 RELATED WORK 
Our research builds on prior work on how-to videos, camera robots, 
and human cues for robot control. Our interaction design is inspired 
by recent progress in performance-driven interactive presentations. 
Below we review related work. 

2.1 How-To Videos 
How-to videos are commonplace on online video and livestreaming 
websites and provide convenient ways to learn physical tasks [14, 
17, 37]. Research in human-computer interaction (HCI), cognitive 
science, and education technologies has studied how attributes of 
how-to videos, such as perspectives [26], pace [58], and instructor 
identities [23], could impact learning. User interface research has 
specifcally investigated novel interfaces for exploring [10], navigat-
ing [11, 61], annotating [29], and editing [12] how-to videos. Our 
work builds on these previous works on how-to videos but aims to 
facilitate flming these videos instead of their post-processing or 
consumption. 

2.2 Interactive Presentations 
Researchers have explored how the performance of the presenter, 
including speech [32], gesture [22, 48], and sketching [43, 55], can 
drive real-time on-screen graphics to make live or recorded pre-
sentations more informative and engaging. A particularly elegant 
aspect of these interactive presentation interfaces is that they allow 
presenters to merge graphics efect controls into content delivery. 
RealityTalk [32] leveraged keywords in verbal presentations to trig-
ger visual augmentations. Saquib et al. [48] enabled presenters to 
directly manipulate graphical elements and efects with gestures 
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and changes in postures. Hall et al. [22] also studied the use of 
gestures, focusing on modifying data visualizations. Our user inter-
actions with Stargazer are inspired by how prior work fuidly fts 
efect controls into presenter performance by leveraging gestures 
and speech. Instead of controlling digital artifacts captured by a 
fxed camera, Stargazer focuses on controlling a dynamic camera 
with instructor actions. 

2.3 Human Cues for Human-Robot Interaction 
Prior research has examined coordination mechanisms that human-
human teams use for collaborative physical tasks. These tasks de-
mand joint attention—directing a partner’s attention to an object 
or area of interest. Human-robot interaction researchers have pro-
posed several methods to aid joint attention. A direct approach 
can be having users annotate the robots’ sensor input (e.g., camera 
streams) [51, 60], but this usually requires an additional device. 
Tracking the human’s gaze enables anticipatory robot planning and 
execution of actions [2, 4, 5, 25, 40], or can be used to prompt robot 
takeover when it detects user hesitation [47]. A gesture is another 
mechanism to direct attention by humans and robots [49], includ-
ing pointing, presenting, and exhibiting objects while collaborating 
on physical tasks [20]. Humans can even use language to direct a 
robot’s attention [56], which has been utilized for hands-free robot 
programming [16] and commanding a robot during pick-and-place 
tasks [36]. We note that prior research has typically used either 
explicit communication mechanisms (i.e., pointing, commands, etc.) 
or more implicit communication mechanisms (i.e., eye gaze) to ma-
nipulate the robot. Stargazer’s approach employs both explicit and 
implicit communication acts. Still, our approach considers these 
acts part of the performative dialogue between the presenter and 
the audience rather than between the presenter and the robot. 

2.4 Camera Robots 
Research in remote assistance and telepresence mostly studied cam-
era robots that were manually operated with GUIs by remote users 
(e.g., [21, 31, 57, 59]). Recent remote assistance camera robots, such 
as RemoteCoDe [46], can be controlled implicitly by remote helpers’ 
face orientation. Another line of work has explored camera robots 
that react to signals from the people being flmed. Autonomous cam-
era drones can track the human subject and adjust their fight plans 
based on the subject’s positions [41], postures [24], and actions [6], 
often informed by cinematography principles [27] or learned pref-
erences [6]. While not flming humans, Rakita et al. [44] designed a 
method for a robot arm to dynamically capture another arm being 
teleoperated to assist teleoperation. Although responsive to human 
signals, these robots mainly do not allow the user being flmed to 
actively initiate signifcant behavior changes in the robots, such 
as changing the subject or camera framing. Stargazer aims to fll 
this gap by providing instructors with more fne-grained real-time 
camera behavior controls for flming how-to videos. 

3 CHARACTERIZING CAMERA USE IN 
HOW-TO VIDEOS 

The design of Stargazer’s behaviors and interactions was informed 
by studying the content and visual language of existing how-to 
videos. We studied 50 videos from three categories of physical skill 

instruction with the aim of learning: (1) What are the common 
types of shots in these videos? and (2) How are framing, angles, 
and movement used in how-to videos by creators? 

3.1 Video Corpus 
Our video corpus contains 50 instructional videos, with 15 on Com-
puters and Electronics, 18 on Food and Entertainment, and 17 on 
Hobbies and Crafts. The average video length is 5 minutes 22 sec-
onds. The average number of views was 2,176,470 (min: 20,824; 
max: 37,067,768) as of July 2022. We constructed our corpus based 
on physical tasks on WikiHow 1, a well-known database with thou-
sands of user-produced how-to articles on a wide range of daily 
tasks, based on strategies used in prior work [38]. 

To identify classes of physical tabletop-scale tasks, we followed 
“Popular Categories” on the website, and found three categories: 
“Computer and Electronics”, “Hobbies and Crafts”, and “Food and En-
tertainment”. We then randomly surveyed each category to gather 
50 how-to articles and used the article titles to search for videos 
online on YouTube2 using incognito mode. We then selected videos 
based on the following criteria: 1) Responds to the how-to question 
collected from WikiHow; 2) Recorded in the English language; 3) 
At most 20 minutes long; 4) Accumulated over twenty thousand 
views; We used number of views as a proxy to ensure reasonable 
quality for the sampled videos. A recent survey of instructional 
and informational video viewers found that less than 10% of their 
respondents preferred videos longer than 20 minutes [30]. There-
fore, we focused on videos at most 20 minutes long to allow our 
team to analyze a sufciently diverse dataset within our resource 
constraints. 

3.2 Analysis 
We coded the sampled videos at a shot level (884 shots in total, 
average of 17.68 shots each), focusing on what content was being 
captured in each shot and how they were communicated through 
distinct visual language (i.e., angles and framing). We created a 
bottom-up coding scheme with two major categories: subject in 
the shot and camera setup (i.e., angles, framing, and movements). 
Subject in the shot covers what is being shown (e.g. the host, objects). 
Our coding scheme for Camera setup was informed by common 
cinematography practices [7]. This category relates to the visual lan-
guage, including camera angle (e.g., high angle, over-the-shoulder), 
camera framing (e.g., medium, close-up), and camera movements 
(e.g. pan, truck, orbit). Two researchers created and tested the cod-
ing scheme by analyzing fve videos together and then worked 
separately on the remaining videos. 

3.3 Subjects of Shots 
We observed that how-to video shots focus on a small set of subjects— 
the instructor, the actions of the instructor, and the objects used 
in demonstrating the task. The instructor’s actions primarily man-
ifest in the form of manipulating tools and other artifacts with 
their hands. How-to video shots often feature both the instructor’s 
hands and the objects being manipulated (hands+objects, 53.51% 
of total video length, Figure 2 A and D). The second category of 

1https://www.wikihow.com/Main-Page 
2https://www.youtube.com/ 

https://2https://www.youtube.com
https://1https://www.wikihow.com/Main-Page
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A Instructor + Objects/Medium FramingHands + Objects/Standard-Angle Objects/Close-Up Framing

Objects/Extreme Close-Up FramingHands + Objects/High-Angle Instructor/Medium Framing

Figure 2: Example frames from the video analysis. (A) a hands+objects shot from the standard camera angle (B) an instruc-
tor+objects shot with medium framing (C) an objects shot with close-up framing (D) a hands+objects shot with from a high 
camera angle (E) an instructor shot with medium framing (F) an objects shot with extreme close-up framing 

shots focuses more on the instructor verbally “lecturing” to the 
audience and thus primarily shows the instructor talking and pre-
senting objects to them (instructor, 10.18% of total video length and 
instructor+objects, 11.88% of total video length; see Figure 2 B and 
E). Finally, 17.65% of the total video length analyzed includes shots 
featuring objects alone (objects; Figure 2 C and F). These shots often 
show the materials or tools used in the task or the outcome of the 
process. 

3.4 Visual Language 
While the visual language in flm-making encompasses a myriad of 
elements, our analysis focused on those relevant to the positioning 
of cameras, i.e., camera framing, angle, and movements. 

3.4.1 Camera Framing. We found that shots showing each type of 
subject mainly use two types of framing. Shots showing hands+objects 
or objects alone predominantly uses close-up framing (79.92% for 
hands+objects, 64.74% for objects alone, Figure 2A, C, D), followed 
by extreme close-up (15.86% for hands+objects, 28.21% for objects 
alone, Figure 2 F). Shots focusing on the instructor are flmed more 
with medium framing (66.67% for the instructor, 87.62% for in-
structor+objects, Figure 2B and E) than with close-up (33.33% for 
instructor, 10.48% for instructor+objects). 

3.4.2 Camera Angles. When coding camera angles, we used com-
mon camera-angle types while adapting them to ft the context of 
how-to videos. Following cinematography conventions, we labeled 
shots looking down at the subject (hands/instructor/objects) as 
high-angle and those looking up at the subject as low-angle. Over-
head shots were also included in the high-angle category. Shots 
from the same level as the subject, or slightly above it, were labeled 
as standard. We found that most shots focusing on the instructor 
were made with a standard angle (98.89% for instructor and 82.86% 
for instructor+objects, Figure 2B and E). In contrast, high-angle 
(22.42%), point-of-view (34.02%), and standard angles (29.57%) are 
all commonly seen in shots focusing on hands+objects and objects. 

Figure 2A and D show examples of standard-angle and high-angle 
shots for hands+objects. 

3.4.3 Camera Movements. The majority (70.59%) of the shots from 
our sampled videos were shot with static cameras. About 15% of 
the shots had shaky, abrupt camera movements, which were most 
detrimental to their visual quality. Only a small proportion (8.13%) 
of shots applied stable camera movements, such as pan (rotating 
the camera around its own vertical axis), truck (moving the cam-
era along a horizontal axis perpendicular to the direction of the 
lens), orbit (moving in an arc while focusing on the same subject), 
and dolly (moving towards or away from the subject) [7]. This is 
likely because most instructors do not have access to a dedicated 
cameraperson. 

3.4.4 Summary. Our exploration of camera use in how-to videos 
helped us to understand the space of camera shots that Stargazer 
would need to support—what they focus on (the subjects), as well 
as the range of parameters that would need to be modifable/used 
by producers. We next describe the interaction design of Stargazer, 
which makes use of this vocabulary of shot types, and discuss how 
Stargazer gives a producer the ability to transition between diferent 
types of shots during a shoot without needing to break from the 
instruction or pre-defning camera paths. 

4 STARGAZER INTERACTION DESIGN 
Stargazer helps instructors produce “one-take” how-to videos with 
a single camera on a highly articulated, 7-degree-of-freedom robot 
arm. The system tracks subjects and adjusts camera framing and 
angle dynamically in response to the instructor’s actions and speech. 
For instance, the instructor can have Stargazer adjust its view to 
look at each of the tools they will be using during the tutorial— 
pointing at the tools one after another to have Stargazer pan to 
show each of them. Finally, they can say to the audience, “Now if 
you look at how I put A into B from the top”, Stargazer will respond 
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Instructor Cues

Implicit Explicit

SpeechGestural

Head Position

Torso Orientation

Hands Position

One Hand &
Two Hand Gestures

Suggest Tight 
Framing

Raising Hand Suggest High
Angle

Figure 3: Instructor cues that infuence Stargazer behaviors. 

by framing their action with the items with a high angle, giving 
the audience a better view. 

Our goal in designing the interaction vocabulary was to identify 
signals that are smooth, subtle, and could conceivably be a part 
of the instructor’s dialogue/rapport with the video audience. Our 
design avoids the need for the instructor to communicate separately 
to the camera robot independent from the audience; instead, the 
signals are subtly integrated into the tutorial presentation. 

4.1 Capabilities and Needs 
Our analysis of how-to videos showed a wide range of video shots 
and capabilities would be needed by instructors. This provides the 
building blocks of Stargazer’s functionality. We characterize these 
based on the vocabulary and coding scheme developed in Section 3. 

• Subject: The camera needs to be able to capture the subjects 
common in how-to videos. 
Instructor shots primarily frame the instructor for di-
rectly addressing the audience—sometimes while present-
ing objects. (instructor and instructor + objects from Sec-
tion 3.) 
Action shots capture the instructor’s hands manipulat-
ing various tools and objects when performing the demon-
strated physical processes. (hands + objects from Section 3.) 
Object shots focus on one or more objects that the in-
structor points to (objects from Section 3.) 

• Following: Because the subject may be moving, the robot 
should automatically locate and follow the subject, maintain-
ing this view within the constraints of the current shot type 
as well as distance. 

• Camera Framing/Angles: Instructors should be able to se-
lect and transition between normal and tight (zoomed-in) 
framing, as well as standard and high angles. 

• Camera Movements: Instructors should also be able to initiate 
common cinematographic camera movements (e.g. orbit, 
truck). 

• Feedback: As with other agents and artifacts that act au-
tonomously [28, 52], the robot needs to provide feedback to 
the instructor about its current state. 

4.2 Interaction Vocabulary 
Stargazer responds to instructor signals selected to be subtle (Fig-
ure 3). Our goal is to defne a vocabulary that ideally fts into the 
natural fow of the content delivery, without being jarring to the 
audience and the instructor. The vast majority of the time, Stargazer 
is understood to be operating autonomously in a reasonable way 
(i.e., tracking and following the subject with a given framing), and 
smoothly transitioning between shots to increase legibility. The 
default camera behavior follows the implicit bodily movements 
of the instructor and the objects as they are being manipulated. 
Shifts in the camera position and orientation are driven by signals 
from the instructors—the robot constantly monitors the instruc-
tor’s hands, head, and body postures looking for these signals. 
Gesture and speech signals from the instructor—ostensibly to the 
audience—signal to Stargazer changes in high-level camera behav-
iors, including the subject of shots, camera framing, and camera 
angles. Our designs select cues that fnd a balance between subtlety 
and the chance of false activation. 

4.2.1 Body Movement Cues: Hands. The vast majority of how-to 
video shots are shots of the volume in front of the instructor—where 
their hands are demonstrating or manipulating an object; this is 
Stargazer’s default state. For such action shots, Stargazer locates 
both hands of the instructor and tries to: (1) position both near the 
center of the frame, and (2) identify a proper distance to capture 
the hands that accommodate for recent hand movement (Figure 4 
A-D). Stargazer tracks the midpoint of the two hands and models a 
spherical volume that contains the hand movement for the past 5 
seconds. This accounts for situations where the distance between 
the hands changes rapidly—e.g. when the instructor needs to, for 
instance, select and use tools that are placed adjacent to the object 
being manipulated. The camera is positioned such that it looks at 
the midpoint of the two hands and at a distance where the sphere 
covers one-third of the width of the camera frame. 

4.2.2 Body Movement Cues: Head. In instructor shots, the face of 
the instructor is centered horizontally in the frame, and the camera 
is oriented perpendicular to the instructor’s torso (Figure 4 E and 
F). Following the rule of thirds from cinematography principles [7], 
Stargazer positions the camera such that the instructor’s eyes are at 
one-third from the top of the camera frame and works to maintain 
this framing and orientation. 
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C D

FE

BA

Figure 4: Body movement cues that Stargazer reacts to. (A 
and C) In action shots, Stargazer follows the hands of the 
instructor and adjusts its distance to the hands. (B and D) 
show what the camera captures in A and C. (E and F) In 
instructor shots, Stargazer follows the head position of the 
instructor. 

4.2.3 Body Movement Cues: Torso Orientation. In instructor and 
action shots, Stargazer points its camera perpendicularly to the 
line connecting the instructor’s two shoulders to increase subject 
visibility. The camera robot reorients itself if an instructor’s torso 
orientation changes (Figure 5). 

4.2.4 Gestural Cues: Single-Hand Pointing. Instructors can direct 
the attention of the audience by pointing with their index fnger 
at an object—a common communicative action in both everyday 
life [19] and instructional settings [35]. Stargazer interprets this 
action as a transition to an object shot by tracking a location that 
is along the instructor’s pointing direction, close to the fngertip 
(Figure 6). Stargazer will continue to follow the instructor’s hand 

BA

Figure 6: Stargazer transitions to an object shot by following 
the instructor’s pointing hand. 

BA

Figure 7: The instructor can move their fnger in a horizontal 
line to trigger a camera “truck” efect (i.e., camera moving 
horizontally along an axis perpendicular to the lens’ direc-
tion) 

while they point (this allows for them to point along a trajectory, 
for example). Once the instructor stops pointing, Stargazer returns 
to capturing action shots, i.e following the hands. 

The instructor can also move their index fnger rapidly in a 
horizontal line while performing the pointing gesture. Stargazer 
interprets this as a signal to perform a linear tracking efect (a 
“truck” movement). Its camera follows the fnger’s position while 
being perpendicular to the fnger’s trace (Figure 7). 

4.2.5 Gestural Cues: Raising Hand. Raising a hand and waving is 
a familiar gesture for greeting and mediating attention [33], for 
example, to open up a conversation. Stargazer interprets this hand 
wave signal as a signal to transition to an instructor shot (Figure 8). 
Stargazer specifcally recognizes a hand above the shoulder for a 
short period (1s). 

4.2.6 Gestural Cues: Two-Hand Pointing. The instructor can initi-
ate a camera orbit movement with one fnger pointing from each 
hand as if they are presenting an object to the audience (Figure 9). 
Stargazer interprets this gesture as a signal to orbiting around the 

BA

Figure 5: In instructor shots and action shots, Stargazer ad-
justs its camera orientation and looks perpendicular toward 
the line connecting the instructor’s shoulders. 

BA

Figure 8: The instructor raises their hand to signal Stargazer 
to transition to an instructor shot. 
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Figure 9: The instructor performs a two-hand pointing ges-
ture to make the camera orbit around the midpoint of the 
two fngertips. 

midpoint of the two fngertips, giving an extended shot while the 
camera moves in an arc. 

4.2.7 Speech Cues: Verbally Suggesting Tight Framing and High-
Angle. During in-person instructional settings, an instructor might 
suggest to a learner to lean in (e.g., “If you take a closer look, 
...”) or to watch from a diferent perspective (e.g. “You can see 
from the top ...”). Such speech acts are necessary for motor skill 
learning [13], since they direct the audience to attend to something 
specifc. Stargazer interprets certain pre-defned speech signals 
from the instructor as suggestions about camera framing and angle 
when the dialogue seems to make these recommendations to the 
audience. We implemented two specifc speech-triggered behaviors. 

Stargazer leverages a state-of-art large language model to in-
fer the intent of the instructor’s speech without enforcing strict 
templates. The instructor can control zoom-in by saying sentences 
that suggest taking a closer look. For example: “If you look closer, 
you can see this socket takes a hexagon shape”, or “Pay more at-
tention to how I take the lid of.” (Figure 10 A and B). Similarly, 
the instructor can control the camera angle (high-angle shot vs. 
standard-angle shot) with sentences that suggest viewing from a 
higher position. For example: “It is better to look from the top to 
see how I take the headband of”, or “I want you to take a top-down 
perspective now so that you see the full model.” (Figure 10 C and D). 
To reset the camera angle to be standard or framing to be normal, 
the instructor hides one of their hands behind their body. 

Stargazer’s use of speech in this way frees the instructor’s hands, 
which are often occupied in how-to videos. This is markedly difer-
ent from our use of gestures for shot transitions involving a shift of 
subject. Those transitions typically occur before/after a complete 
step when an instructor can choose to empty their hands. 

4.3 Feedback to Instructors 
Prior research suggests the benefts of providing feedback about an 
autonomous agent’s states to people who interact with it [28, 52]. 
Our early pilot tests also show that instructors need to know what 
the camera “sees” and be able to understand Stargazer’s state and 
near-future actions. Stargazer provides this feedback with a display 
attached to the camera mount, which faces the instructor (Figure 11). 
The display shows a real-time camera preview, and additionally, an 
icon for the current shot type, and two indicators showing whether 
a pointing gesture is detected on the left and right hands. 

2X
BA

DC

Figure 10: The instructor can (A and B) verbally suggest tak-
ing a closer look to make the camera zoom in by 2X, and (C 
and D) verbally suggest looking from a higher position to 
take a high-angle shot. 

5 IMPLEMENTATION 
The Stargazer prototype consists of three main parts: the robot 
arm, the camera, and the sensors (Figure 12). The robot arm is a 
seven-degree-of-freedom Franka Emika Panda, controlled by a col-
lection of Robot Operating System (ROS) nodes running on a Linux 
workstation (the robot workstation). The sensors include a Kinect 
v2 depth camera, an RGB webcam, and a wireless microphone for 
sensing the instructor’s skeleton, pointing gestures, and speech. 
All sensors connect to a Windows workstation (the sensor work-
station), which processes sensor data and sends them to the robot 
workstation through a wired local network in UDP. The camera 
and the camera monitor are both attached to the robot through a 
custom mount. The software and hardware design of our prototype 
is open-sourced online3. 

5.1 Camera Hardware and Software 
We use the back-facing camera of an Android mobile phone (Google 
Pixel 6 Pro) as the camera of Stargazer. The phone runs a custom 
software application to record video and communicate with the 
robot workstation through a wireless UDP connection. The appli-
cation shows the preview of the phone’s camera feed and several 
widgets showing the current shot type and gesture detection results, 
as described in Sec. 4.3. The robot workstation sends messages to 
this application to control the camera’s zoom level and update the 
status widgets. The camera monitor mirrors the screen of the phone 
to provide feedback to the instructor (more details in Sec 5.1.1). The 
phone is inserted into a 3D-printed mount (Figure 11), which is 
attached to the end of the robot arm as a custom end-efector. 

5.1.1 Camera Monitor. An iPod Touch is mounted to the instructor-
facing side of the camera mount as the camera monitor. It displays 
the preview of the mobile phone’s camera feed and robot status, 
mirroring the phone’s screen through a local wireless network. We 

3https://github.com/jchrisli/stargazer-chi23 

https://3https://github.com/jchrisli/stargazer-chi23
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Figure 11: The camera monitor provides feedback to the in-
structor, showing the camera preview, the current shot type, 
and whether a pointing gesture is detected. In this photo, the 
monitor shows a head icon indicating the current shot type is 
an instructor shot, and two red dots indicating neither hand 
is pointing. 

use the sensor workstation as a relay point for screen mirroring. 
The sensor workstation frst obtains a screencast of the phone 
through scrcpy4 and streams the screencast to the iPod Touch via 
Moonlight5. 

5.2 Sensing Instructor’s Actions 
The Stargazer prototype employs a combination of sensors to detect 
the body pose, gesture, and speech of the instructor. Future work 
can explore leveraging the sensing capabilities of the robot’s camera 
itself. 

5.2.1 Body Pose. We point a Kinect v2 depth camera at the in-
structor and infer the instructor’s body pose using the Kinect SDK 
for Windows. Stargazer uses the head joint as a proxy for the face, 
the fngertip joints for the hands, and the vectors from the wrist 
joints to the corresponding fngertip joints for pointing directions. 
In object shots, we track a location that is 12cm from the fngertip 
along the pointing direction. To estimate the spherical volume that 
contains both hands, we run a rolling average of the distance be-
tween the hands for the most recent 5 seconds. For fltering and 
streaming the data, we used the Creepy Tracker toolkit [54]. 

5.2.2 Hand Gesture. A 720p RGB webcam is aimed at the center 
of the workbench to detect the instructor’s pointing gestures. We 
locate the 2D keypoint positions of the instructor’s hands using a 
deep-learning-based detector [34] and classify whether the hand 
is performing a pointing gesture (index fnger extending forward 
while middle, ring, and pinky curled up) through a custom model. 
The 21 key point positions from each hand have been normalized 
before classifcation. The gesture detection model is a four-layer 
fully-connected neural network implemented with Keras, trained 
with data collected from the research team. To reduce ambiguity 
in classifcation, we only classify the current gesture as pointing if 
the model has at least 85% confdence. We further apply low-pass 
fltering to remove sporadic false positives. 

4https://github.com/Genymobile/scrcpy 
5https://moonlight-stream.org/ 

5.2.3 Speech Understanding. We record the instructor’s speech 
with a wireless microphone clipped to the instructor and send it 
to a speech recognition API (Microsoft Azure Speech-to-Text6). 
The transcribed text, along with a custom prompt7, is then sent to 
a large language model (GPT-3 [8]), which labels the intent (i.e., 
tighter framing/high angle/normal) of the instructor. 

5.3 Robot Control 
The Stargazer prototype uses ROS to communicate with the robot 
arm and control its motion. The robot workstation runs a ROS node 
that computes the next target camera pose based on sensor inputs. 
We describe the algorithm for planning the next camera poses in 
Section 5.4. Given a target camera pose, we get the desired Cartesian 
linear and angular velocities with a PID controller. A real-time 
servoing library, MoveIt Servo, converts the Cartesian velocities 
to joint velocities. Finally, we set the joint velocities through the 
Franka ROS interface8. The next camera pose is calculated at a 
frequency of 5 Hz. The PID control loop runs at 100 Hz. 

We monitor the robot’s status to determine if it is close to kine-
matic singularities or joint limits which would render it unable to 
move properly. If so, the control program pauses real-time velocity 
control and recovers the robot from the error state by returning to 
a safe neutral position. 

5.4 Robot Motion Planning 
While the camera pose has six degrees of freedom, Stargazer’s 
camera always aims to look at a known location (e.g. the instructor’s 
head) and keep its image plane’s horizontal axis parallel with the 
ground. This reduces our motion planning problem from R6 to 
R3. We aim to plan the next target camera position xt+1 ∈ R3 

for capturing the subject (e.g., face, both hands) at position xs ∈ 
R3 under a number of constraints, such as motion smoothness 
and distance to the subject, at time step � . Except for planning 
the orbit paths, we formulate the next position selection as an 
optimization problem, following prior work in autonomous drone 
cinematography [41]. We calculate the orbit path directly as a series 
of waypoints, as described in Section 5.4.2. 

5.4.1 Motion Planning Cost Function. The cost function � consists 
of the weighted sum of the following cost values. 
Motion Smoothness: To achieve smooth camera motion, we pe-
nalize large displacement in the camera position with the cost 
��� = (xt+1 − xt)2. 
Desired Distance: We frst compute the desired distance � to flm 
the subject based on the current type of shot. For action shots, 
the subject should cover one-third of the camera frame’s width. 
Therefore, for a subject with radius � and a camera with feld-of-
view � , the desired distance � = 2� tan (�/2)/3. For instructor 
shots and object shots, we empirically set � to be 0.20m and 0.12m, 
respectively. Given � , the desired-distance cost is ��� = (∥xt+1 − 
xs ∥ − �)2. We do not enforce distance cost for high-angle shots as 
it tends to drive the robot into kinematic singularities. 
Pitch: For instructor shots and shots with a high-angle setup, we 
encourage a camera pitch value close to �/2 and 0, respectively. 

6https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
7We attach the prompt we used in the supplemental materials. 
8https://frankaemika.github.io/docs/index.html 

https://6https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text
https://5https://moonlight-stream.org
https://4https://github.com/Genymobile/scrcpy
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Figure 12: An overview of the components of the Stargazer prototype. 

We calculate a pitch cost for the desired pitch value � as �� = 
((xs − xt+1)/∥xs − xt+1 ∥ · vg − arccos (�/2 − �))2, where vg is the 
gravity direction (0, 0, −1) (see Figure 13A). 
Orientation: We add a camera orientation term �� in two condi-
tions. For face and action shots, we encourage the camera to look 
perpendicularly at the line linking the instructor’s two shoulders. 
During truck movements, we guide the camera to point perpendic-
ularly at the fnger’s movement direction. Since we already have a 
cost term for controlling camera pitch, we only need to penalize 
the diference between the camera orientation vector of the next 
step and the target camera orientation vector in the ground plane 
(Figure 13B). We refer our readers to Appendix. A.1 for the detailed 
derivation of �� . 

In summary, the cost function for selecting the next camera 
position is 

� = ������ + ��� ��� ��� + �� ���� + �� ���� 

where ��� , ��� , �� , �� are weights for the cost terms. If the current 
shot is not a high-angle shot, ��� = 1 otherwise 0. If the current 
camera angle is set to high-angle or the current shot is an instructor 
shot, we set �� = 1, otherwise 0. If the current shot is a hand or 
instructor shot, or the camera is performing a truck movement, 
�� = 1 otherwise 0. For weights, we empirically set ��� = 1.0, 
��� = 0.2, �� = 1.0, �� = 0.5 to achieve a balance between 
responsiveness and smooth tracking. To simplify the bounds on the 
variables, we re-parameterize xt+1 as (�� +1,��+1, �� +1) in a polar 
coordinate system. We solve this nonlinear optimization problem 

��
�����

B

����

���

A

Figure 13: (A) The cost for the diference between the camera 
pitch angle of the next camera position xt+1 and the desired 
pitch angle (in red) �. (B) The cost for the desired camera 
orientation (in red) and the orientation of the next camera 
position xt+1. � indicates the diference. 

with the SLSQP solver in SciPy. We refer our reader to Appendix. A.2 
for the details of the polar coordinate system used and the bounds 
on the variables. 

5.4.2 Orbit Paths. Given an orbit center, the Stargazer camera 
always travels along an arc of �/4 and looks at the orbit center 
from a distance of 60cm with a pitch angle of �/6. 

5.4.3 Implementation Details. The robot workstation runs Ubuntu 
20.04 and ROS 1 Neotic with an Intel Xeon W2295 CPU and 503 GB 
memory. The sensor workstation runs Windows 11 with an Intel i7 
8750 CPU and 16 GB memory. We implemented one performance-
critical ROS node, which calculates end-efector velocities, in C++, 
and the other nodes in Python. The speech detection and labeling 
program were implemented in C#. The programs for other sensors 
were implemented in Python. 

6 EVALUATION 
We conducted a preliminary user evaluation where six instruc-
tors created video tutorials demonstrating distinct physical skills. 
The goal of the evaluation was to gain an initial understanding of 
Stargazer’s ability to support the flming of how-to videos and the 
instructor’s perception of working with Stargazer. 

6.1 Study Design and Participants 
We invited six physical skill instructors (four female, two male) to 
create video tutorials for skills that they have expertise in. Three 
participants (P1, P5, and P6) were artists who practiced the craft ex-
plained in their tutorials professionally. The other three participants 
were experienced hobbyists with more than a year of experience in 
the skill they taught. Two participants (P2 and P5) had experience 
teaching physical skills through online videos or live streaming. P5 
and P6 were professional flmmakers. See Table. 1 for more details 
on the participants. Participants were compensated for their time. 

The study protocol has been approved by the ethics review board 
of our institutions. 

6.2 Task and Procedure 
We asked the participants to freely demonstrate their physical skills 
without constraints. The only limitations were the scale (the task 
was demonstrated on a workbench) and the length of the video 
instruction (around 5 minutes per session). Participants brought 
their own materials. Figure 14 shows a participant flming a video 
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Figure 14: Participant recording a how-to video on skateboard 
maintenance. 

with Stargazer. Each session lasted around 90 minutes and consisted 
of three phases: 
Training. After flling out a demographics survey, participants 
went through a training session where they learned about the fea-
tures of Stargazer, including the types of shots it ofers and the 
interactions it supports for changing camera behaviors. They exper-
imented with all the features and recreated a short Lego assembly 
tutorial video, which required using each feature at least once. 
Rehearsal and Review. After participants successfully recreated 
the Lego tutorial, they flmed a rehearsal version of their own 
physical skill tutorial with Stargazer. The experimenter did not 
provide any guidance or feedback during flming. The participants 
then reviewed the rehearsal version with the experimenter, using 
think-aloud to remark on the video and refect on which parts could 
be improved. We included the rehearsal stage for participants to 
practice delivering their instruction. 
Filming and Review. Participants then created a second take of the 
tutorial video, incorporating changes in content and delivery they 
had planned after reviewing the rehearsal version. Again, partici-
pants used think-aloud to review the outcome and comment on the 

P1         

printing. 
P2 (EH) Skateboarding infuencer, running Skateboard maintenance. 

an Instagram channel teaching 

skateboarding skills. 
P3 (EH) Virtual reality researcher. Head-mounted display 

set-up. 
P4 (EH) Crafting hobbyist with art training. Clay model making. 
P5 (Pro) Filmmaker, teaching stop-motion Stop-motion puppet 

flmmaking to college students and making. 
the general public. 

P6 (Pro) Digital artist and flmmaker. Interactive sculpture 

making. 

(Pro) Artist in digital fabrication. Photogrammetry and 3D

ID Background Skill Taught 

Table 1: Evaluation Participants (Pro - Professional; EH -
Experienced Hobbyist) 

Li, et al. 

quality of the video and their experience when flming it. Following 
the review phase, the experimenter conducted a semi-structured in-
terview with participants, focusing on alternative ways to flm the 
videos, how the robot could ft into their current tutorial creation 
workfow, and comparing Stargazer with existing video capturing 
solutions for real-time transitions between multiple camera sources, 
such as Open Broadcast Studio (OBS). Finally, participants answered 
a questionnaire consisting of 7-point Likert scale questions about 
their perception of the robot’s behaviors, the interactions, and the 
video they produced. We recorded robot motion and user input 
logs for preliminary performance analysis. As a frst step in pro-
totyping interactive camera robots for flming how-to videos, our 
data collection focused on the perspectives of instructors to get 
their frsthand account of how Stargazer’s interaction design might 
afect instruction delivery and video quality. Future work could 
instead study the perspectives of external experts and learners on 
produced videos. 

6.3 Setup and Apparatus 
We ran the study in a controlled lab environment. The workbench 
where the participants demonstrated their skills was 1.6 meters x 
0.8 meters, placed 1.2 meters from the base of the robot. We chose 
this physical setup and placed constraints in motion planning so 
that the robot was distant enough to avoid any collision between 
the robot and the instructor. One researcher guided participants 
through the experiment and conducted the interview. The setup of 
the robot is as described in Section 5. 

6.4 Results 
In this section, we describe the video results created by participants, 
their perception of interacting with Stargazer, and preliminary 
technical performance measures. 

6.4.1 Training. All participants were able to successfully use all the 
features of Stargazer while flming the Lego assembly tutorial in the 
training session. Participants picked up gesture-based interactions 
very quickly but it took them 2-3 trials to learn to add speech 
commands into instruction content. 

6.4.2 Video Content. All participants were able to complete their 
tutorial videos after the frst (rehearsal) or second take. Two partic-
ipants (P4 and P6) were satisfed with the results of their frst takes 
and stopped flming. The remaining participants did a second take. 
Our following analysis of the video content is based on the fnal 
versions of the video results. 

Figure 15 illustrates keyframes and timeline summaries of each 
of the videos created by participants. The lengths of the fnal videos 
ranged from 245 seconds (4m 5s) to 451 seconds (7m 31s) (M=320s, 
SD=69s). The skills in each video varied signifcantly in terms of 
the artifacts and processes required, and participants imprinted 
their personal style in the delivery of the content. Overall, 16.1% of 
the total video duration featured instructor shots, 78.4% was action 
shots, and 5.5% was object shots. Participants incorporated a rich 
variety of shots by leveraging diferent combinations of subjects, 
camera framing, and camera angles (see Figure 15). On average, 
each video had 7.7 times of subject changes (e.g., from an action 
shot to an object shot, SD=2.6), 5.7 framing changes (e.g., zoom-in, 
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0:00 (0%) 4:57 (100%)

P2

0:00 (0%) 4:55 (100%)

P1

0:00 (0%) 7:31 (100%)

P4

0:00 (0%) 4:05 (100%)

P5

0:00 (0%) 5:17 (100%)

P6

Action shot Object shot Instructor shot

Tight framing High-angle Orbit movement

Figure 15: Timelines with the videos’ participants flmed with Stargazer. The timelines are color-coded for the shot type, camera 
angles, camera framing, and camera movements. The representative frames for each video are above the timelines. 
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SD=2.9), and 1.7 angle changes (e.g., from standard to high angle, 
SD=1.5). Participants were also able to supplement their videos 
with camera movements, albeit to varying extents. They used orbit 
movements 1.2 times per video on average (SD=1.2). There was only 
one instance of a participant using the truck movement. We attach 
the participant-produced videos in our supplemental materials. 

6.4.3 Video Qality. Participants reviewed the tutorial videos they 
produced and remarked on the quality of the results. All partici-
pants reported they were able to successfully deliver the instruc-
tion content that they had planned in the produced videos (M=6.5, 
IQR=0.75). Additionally, they found the videos informative (M=6.3, 
IQR=1.0), with good visual quality (M=6.5, IQR=0.75) and cinemato-
graphic quality (M=6.0, IQR=1.5). One participant (P6), who is a 
professional flmmaker, highlighted the visual characteristics of 
“one-take” videos, which Stargazer flms, “there is interesting theory 
attached to it (one-take flms) about continuity and slowness that 
allows the viewer to be fully present. ”. Indeed, professionals have 
long valued cinematic continuity in flm editing and research in 
cognitive science posits that continuity helps with guiding viewers’ 
visual attention [53]. An interesting question for the felds of HCI 
and educational psychology is how cinematic continuity in learning 
materials may afect physical skill learning. 

6.4.4 Participants’ Overall Perception. Participants found Stargazer 
useful for creating tutorial video content (M=6.3, IQR=0.75). The 
professional artist participants (P1, P5, P6) stated that they often 
need to document their work processes through video, “we ask 
our colleagues to help (flming) but they are not always available” 
(P1). When comparing Stargazer to their current documentation 
workfow, they appreciated that it could alleviate the burden of 
setting up cameras and post-editing, “do my thing and it (flming) 
just happens” (P5). 

6.4.5 Robot Behaviors and Instructor Control. We conducted an 
in-depth analysis into how the behaviors of Stargazer and the asso-
ciated interactions worked for participants, based on a synthesis 
of interview data, questionnaire responses, and their think-aloud 
comments while reviewing the captured videos. 
Shot types. All participants found the three types of shots–action, 
instructor, and object–sufcient for their purposes when creating 
the tutorials (M=6.0, IQR=1.5). As expected, participants mostly 
used instructor shots to introduce themselves, the task, and certain 
objects. They used action shots for illustrating the steps and used 
object shots to highlight objects and details on objects. However, 
we also observed that participants were able to fexibly adapt the 
robot’s behaviors for their in-situ flming needs and blurred the 
boundaries between the anticipated purposes of the shots. For ex-
ample, in her tutorial on stop-motion puppets, P5 often described a 
component while holding it close to her chest. This hand position 
leads to the camera capturing both her face and hands while the 
robot is still in the mode of flming action shots. She explained that 
she guided the robot’s camera into this position as she wanted to 
talk to the audience face-to-face more often. 
Camera framing and angles. Most participants (5/6) reported 
that they were able to flm the tutorial content with the framing and 
angle they desired (M=5.3, IQR=2.5 for framing, M=5.1, IQR=1.0 

for angles). All participants see clear utility in the ability to ad-
just framing (M=6.6, IQR=0.75) and angles (M=6.5, IQR=1.0) using 
speech. 

Participants mostly used normal (medium for instructor shots, 
close-up for action and object shots) framing (78.9% of the total 
video duration), but switched to tighter framing to highlight details. 
Control of framing especially benefted tasks that involved more 
actions and objects at a fne scale. P4 applied tighter framing for 43% 
of her full video to ensure that individual parts of the clay model, 
including smaller components like facial features, were clearly 
visible to the audience (e.g. the last keyframe on P4’s timeline in 
Figure 15). Participants used high-angle shots to show an overview 
of the workbench (e.g., P2’s second keyframe on Figure 15) or to 
take a diferent, visually interesting perspective of the same object 
(e.g., P5, P6, the second keyframes on both of their timelines in 
Figure 15). After showing how individual components constitute a 
sculpture, P6 made the robot look downward to show the sculpture’s 
complete structure. 
Blending Camera Control into Instruction. Overall, partici-
pants found that they could blend camera controls fuidly into 
instructional activities. One participant (P5) drew on her experi-
ence teaching live remote art classes via a video recording tool 
(Open Broadcaster Software, or OBS), which supports real-time 
switch between video sources , and stated that Stargazer’s controls 
did not force her to “stop my work and reach for that box (a keypad 
for changing camera sources in OBS) every time”. 

Four participants explicitly commented on the ease of using the 
pointing gesture to initiate object shots, fnding that it naturally ft 
into their actions without being disruptive to instruction (M=6.7, 
IQR=0.75), as P6 described, “do not need to think about it”. P4 liked 
that she could quickly shift the camera between a tool and the work 
at hand through pointing. However, P1 found that the transient 
nature of the pointing gesture somewhat limited her freedom to 
construct an object shot. To make the camera lock onto a particular 
object while she was fetching other tools, she had to keep pointing 
at the object with one hand and grab the tools with her other hand. 
She suggested that the robot should “keep focusing on an object 
unless I tell it to stop”. 

Participants reported that raising their hand to trigger instructor 
shots did not disrupt their fow but was less natural than pointing 
(M=5.2, IQR=2.25). P3 explained “it (raising a hand) feels very natural 
when you have something to show in you hand but not so much if 
you just want to quickly talk to your audience”. P6 suggested the 
potential of gaze, “I’d like it to turn to my face if I look at it, and go 
back to my hands if I look away”. 

Five out of the six participants found controlling camera framing 
and angles with speech did not disrupt their instruction delivery 
(M=5.5, IQR=1.75). P2 considered it his favorite feature, as “I can call 
it to zoom in anytime even if both of my hands are occupied...Being 
able to show the details makes me want to explain more because 
they (the audience) can see it.” Participants liked the fexibility that 
Stargazer ofered in choosing speech commands; however, they 
also expressed that the uncertainty in “what the robot actually 
understands” (P1) could make them overthink what to say. 

6.4.6 Preliminary Performance Measures. We report objective mea-
sures for several aspects of the Stargazer prototype based on data 
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logs and human labels of study session recordings. Note these mea-
sures were only meant to obtain an initial understanding of the 
technical approaches we used. We included recordings of the re-
hearsal and the fnal takes (if available) in the analysis. The total 
duration of the video analyzed was 71 minutes and 22 seconds. 
Pointing Gestures. We compared the human labels for partici-
pants’ gestures and detection result logs. The precision for pointing 
detection was 91.2%, and the recall was 86.6%. 
Speech Commands We calculated the metrics for speech com-
mands, labeling on a per-sentence basis (i.e., “you can take a close 
view here” as one sentence). There were in total 41 sentences labeled 
as suggesting “tight framing” by humans and 40 by Stargazer. The 
precision for the label was 90.0%, and the recall was 87.8%. There 
were in total 18 sentences labeled as suggesting “high-angle” by 
humans and 17 by Stargazer. The precision for the label was 94.1%, 
and the recall was 88.9%. We also calculated the delay between 
participants fnishing a sentence with a particular intention (e.g. 
tight framing) and the time the robot received the corresponding 
state change command. The average delay was 2.4s (SD=2.3s). The 
large variance might be due to the variance in speech recognition 
results. 

The goal of the Stargazer prototype is to demonstrate and evalu-
ate the concept of directing camera operations by following instruc-
tor cues. We anticipate that with the advance in machine learning 
and sensing technologies, the performance of the techniques we 
applied will continue to improve. 

7 DISCUSSION 
Drawing on evaluation results and observations, in this section, we 
discuss the challenges in interpreting instructor intent for camera 
robots, routes to support other content creation workfows, and 
fnally, limitations and future work. 

7.1 Interpreting Instructor Intent 
One goal of our interaction designs for Stargazer is to identify and 
take advantage of instructor cues that clearly express their intent 
in camera confguration. While our design received encouraging 
feedback from the evaluation, we also noted two general challenges 
for future camera robots that interpret instructors’ or other actors’ 
intent to assist in video creation. 

The frst challenge is to understand instructor intent that is 
not well articulated. Although participants generally did not fnd 
incorporating camera control cues disrupted instruction, they still 
have to “actively remember when to use what” (P3). P3 expected 
future robots to be more autonomous, “(content creators) can just do 
their things and not think about there is a camera” (P3). P6 suggested 
that future robots could introduce more variance in camera motion 
that fts the current scene without instructors’ commands. A camera 
robot that can produce quality footage without deliberate human 
input should understand what is to be captured and how to capture 
them. However, the instructor may not want to specify them or do 
not know how to articulate them clearly. Such intents can be difcult 
to glean from instructor cues, as cues including gestures and speech 
are often ambiguous when taken out of their semantic (e.g., what 
is the current task) and temporal (e.g., the instructor’s actions so 
far) contexts [18]. One exciting opportunity for this challenge may 

be a data-driven approach that infers intent based on the semantic 
content of tutorials in the format of scripts, storyboards, or a history 
of the objects that the instructor has interacted with so far. 

The other challenge is to build personalized robot behaviors 
that adapt to an instructor’s preferences and style. Content cre-
ators trying to explore the frontier may seek camera shots that 
are “out-of-distribution” rather than the most common. For these 
explorers, programming-by-demonstration or other more explicit 
robot programming methods may help complement data-driven or 
heuristics-based approaches. 

7.2 Support Other Content Creation Workfows 
Stargazer currently captures videos with a single continuous take. 
While one of the participants (P6), a flmmaker, highlighted the 
aesthetic characteristics of one-shot videos, this is not the only 
format that how-to video creators adopt. For example, P2, who runs 
a skateboarding social media channel, discussed the opportunity to 
capture skateboard drills with Stargazer and pointed out that most 
of his videos are heavily edited short clips for mobile consumption. 
He must also perform and flm the same drill several times until he 
gets satisfactory results. 

Many content creators edit raw footage for conciseness, clarity, 
and visual quality. For example, some content creators might want 
to remove parts of the footage where the robot transitions from 
tracking one subject to another. Future camera robots could assist 
with their workfows using the robots’ data logs. Algorithms could 
automatically remove these parts of the videos in post-processing 
based on the robots’ state history. Alternatively, the system could 
cut to a second, fxed camera’s feed while the robot is in transition 
to avoid delay. For instructors who need multiple takes of the same 
process, future systems could provide interfaces for instructors to 
plan the robot’s motion in future takes based on the recording of 
the frst take. 

7.3 Limitations and Future Work 
The robot arm’s kinematic constraints, including its fxed base 
and fnite reach, place limits on the range of possible camera posi-
tions. Stargazer’s range of possible camera positions is sufcient 
for tabletop-scale activities, but not for tasks involving multiple 
distant locations in a room. These constraints also restrict the use 
of certain camera angles (e.g. point-of-view, top-down) and camera 
movements (e.g. 180° orbit). In future work, we are interested in 
the potential of camera drones [50] and mobile manipulators [3] 
to assist with flming tasks that take place in larger environments 
from a wider variety of angles. 

The cues that Stargazer reacts to do not include all the rich 
nuances in instructors’ intents. For example, some participants 
attempted to trigger object shots with deictic gestures such as 
giving or showing objects to the camera, which were not part of the 
cues that Stargazer recognizes. We observed that most participants 
went through a shift of their mental models about working with 
Stargazer, during the training phases or the frst takes. They began 
to consciously take into account what the robot could understand 
when delivering the tutorials, as P5 put it, “I started to see this is a 
performance of me and the robot together.” Future research could 
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investigate methods to detect diverse and subtle intents, possibly by 
combining multi-modal signals including gaze, posture, and speech. 

Our focus in the video analysis and interaction design for Stargazer 
was on understanding and producing videos that emphasize instruc-
tional content. Other types of physical-skill-focused videos, such 
as creative livestreams, could include signifcant non-instructional 
components like socializing and performing [17] and could be sev-
eral hours long. We plan to further study the content in these 
videos and their creators’ camera control needs to identify addi-
tional cues and robot behaviors for Stargazer to better support 
non-instructional content. 

The dataset for our video analysis used the number of views as a 
proxy for sufcient video quality, but we did not directly assess the 
quality of these videos. Thus, our data includes common instruc-
tor practices, but not necessarily the best practices. Datasets with 
comprehensive quality metrics could be constructed in the future 
to inform guidelines for tutorial video flming. 

As a research prototype, the current Stargazer prototype relies 
on an expensive, general-purpose robot arm and a suite of external 
sensors. As robot-assisted flming becomes more prevalent, there 
could be demand for more afordable, easier-to-use, and lighter-
weight specialized robots for content capture. Future work could 
explore the technical and interaction design of such robots, and 
their implications for content creation on a broader scale. An alter-
native approach is to apply a subset of Stargazer’s camera control 
interactions to ready-to-use technologies, such as camera setups 
consisting of multiple fxed cameras. 

We apply a recovery motion to free the Stargazer robot from 
confgurations close to kinematic singularities [15] or joint limits. 
While the recovery motion is brief, it compromises the fuid cine-
matic continuity. Computing fully singularity-free motion is still 
an active research area in real-time robot motion synthesis [45]. A 
promising solution to this problem is to relax the constraints on 
one or more degrees of freedom in motion planning. In the context 
of robot cinematography, an example of this approach is to ignore 
the camera-to-subject distance. 

While the videos captured by Stargazer were positively received 
by the instructors themselves, we recognize that participants could 
display self-evaluation bias towards their own work. Further evalu-
ations could involve external experts on the skill taught and cin-
ematography experts to counter such possible bias. We also note 
that the design and evaluation of Stargazer have not yet taken 
the perspectives of the end consumer of how-to videos. Our future 
work will investigate learners’ perceptions of robot-captured videos 
and compare them to baseline approaches such as videos flmed 
with fxed cameras. We are also interested in interaction designs for 
learners to infuence the behaviors of camera robots in the context 
of live how-to tutorials. 

8 CONCLUSIONS 
In this paper, we proposed Stargazer, a new approach to capturing 
dynamic how-to video content with a camera robot that reacts to 
subtle cues from the instructor. Stargazer’s camera automatically 
follows the hands or face of the instructor, and transitions between 
these subjects of interest as the instructor suggests. The instructor 
can use gestures and speech that are ostensibly addressed to the 

audience to signal to Stargazer to change the subject of interest 
it follows, its camera framing, and camera angle. Our interaction 
design for Stargazer was informed by an analysis of 50 online 
how-to videos. A user study with six participants, including two 
professional flmmakers, showed that physical skill instructors can 
successfully create how-to video content with Stargazer and were 
satisfed with the produced videos’ quality. They also did not fnd 
the interaction disruptive to instruction delivery. Stargazer explores 
the potential of robot-assisted video flming for how-to videos, and 
we hope it can inspire future research in human-robot collaborative 
content creation. 
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between the camera and the origin. � is the angle that is on the ver-
tical plane. � is the angle that is one the horizontal plane. We chose 

A ADDITIONAL DETAILS ON ROBOT MOTION � ∈ (0.36�, 0.66�), � ∈ (−�/10, 0.4�), and � ∈ (−0.4�, 0.4�) as 
PLANNING the bounds in optimization. 

We provide more details on motion planning, in addition to the 
content in 5.4, including the calculation of the orientation cost, and 
the coordinate system we used in optimization. 

A.1 Orientation Cost 
As introduced in 5.4.1, for the orientation cost term we calculate it 
based on the diferent between the orientation of the next camera 
position, vt+1 and the target camera orientation vo. Both vectors 
are in the ground plane (x-y plane in Figure 16). We describe the 
procedure to compute these two vectors for the case that the camera 
should look perpendicular at the link between the instructor’s two 
shoulder joints (��ℎ indicates its direction). The computation for 
truck movements, where the camera orientation should be perpen-
dicular to the fnger trace, is similar. 

To compute vo, we frst get one particular vector, ��� = ��ℎ × �� , 
that is perpendicular to ��ℎ . �� = (0, 0, −1) is the gravity direction. 
Then �� is the projection of ��� onto the ground plane, normalized. 
To compute �� +1, we simply project the camera orientation (�� − 
�� +1)/∥�� − �� +1 ∥ onto the ground plane. Then the orientation cost 
is square of the norm of the diference between these two vectors. 
That is �� = ∥vt+1 − vo ∥2 

A.2 Polar Coordinate System Used for 
Constrained Optimization 

To simply the constraint condition in the optimization, we convert 
the next position of the camera from Cartesian coordinates to polar 
coordinates. The origin of our polar coordinate system is at the 
second joint of the robot (Figure 16). The Cartesian coordinates of 
this point in the robot frame is (0, 0, 0.333m), according to the spec-
ifcation of the Panda robot. The x, y, z axis of the polar coordinate 
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