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Abstract

The main objective of this thesis was to design a domain specific language that would allow

users to easily describe flight trajectories for drones. Conventional drone control schemes

rely on handheld controllers and, sometimes, on model specific applications that allow users

to pre-plan paths (e.g., FreeFlight Pro). The issue with these is that handheld controllers

display a large learning curve for new users and flight plan applications rely on waypoint

systems, which limits the complexity of the flight plan. Flail is an alternate control scheme

for drones that is capable of programmatically pre-specifying complex flight patterns. Addi-

tionally, an HTC Vive was used to simplify Flail code generation by allowing users to use the

Vive wand to draw out flight trajectories in 3D space. The viability of Flail was examined

through RC drone flight tests and simulations.
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Chapter 1

Introduction

This work aims to create a methodology to address the problem of motion planning (also

known as the navigation problem) necessary in robotics applications. The goal is to find - and

follow a path, in the form of a sequence of valid configurations (positions and orientations)

that moves a controllable object, such as a car or a drone, from an initial position to a final

destination.

1.1 Motivation and Process

Interest in recreational uses for Unmanned Aerial Vehicles (UAVs, or as they’re more com-

monly known as, drones) has skyrocketed, as many hobbyists have begun to use drones in

their day-to-day lives. The most common applications involve aerial photography and film-

ing. Even with the recent appeal of drones for casual usage, there is still a learning curve

when using them. Crashes and collisions are common among new drone pilots [1]. The issue

appears to lie within the default drone control1 configuration, which defaults to two joystick

controllers that have to be used simultaneously. The joysticks control a number of drone

functionalities including ascension, descension, left yaw, and right yaw, as well as forward,

backward, left, and right movement (Figure 1.1).

1Control in this thesis refers to user defined input that conducts a drone through a specified path.
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Figure 1.1: Cobra RC microdrone controller with labeled directions

Therefore, The motivation for this work stems from the difficulty of defining complex

drone flight trajectories, without having previous experience in drone piloting. Some compa-

nies have been successful in coordinating the flight pattern of many drones simultaneously,

Intel’s Shooting Star drones being a recent example [2]. During the 2018 Olympics, Intel

flew over two thousand drones into the sky to form images and animated sequences. (The

drones have not yet been released to the public, nor has any information been given out

regarding their implementation and development.)
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Figure 1.2: Intel Shooting Star Drones light show at California Bear over Travis Air Force
Base, Calif., July 5, 2018. (U.S. Air Force photo by Tech. Sgt. James Hodgman) [3]

With this, a question arose. Would it be possible to design a method that would allow

users to easily direct their drones to follow specific flight patterns?

To address this challenge, a domain specific language (DSL) was designed that would

allow users to do so. The language was dubbed “Flail” (Flavia’s Implemented Language)

and was developed with the idea of aiding users in pre-planning precise flight trajectories.

These routes can be re-used in the future, which allows users to both construct and repeat

flights even if they lack experience in piloting drones.

1.2 Research Goals

The overarching research question addressed in this work is: How can we design a

programming language that allows us to clearly describe movement paths for

drones? This question can be decomposed into four more specific questions:

Research Question 1 (RQ1): How should we design a time-based programming language

that allows us to describe movement paths for drones? [Chapter 3]

Research Question 2 (RQ2): How should we design a distance-based programming lan-

guage that allows us to describe movement paths for drones? [Chapter 4]
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Research Question 3 (RQ3): How can we use gestures to simplify the generation of Flail

code? [Chapter 5]

Research Question 4 (RQ4): What changes, if any, are necessary in order to get Flail to

run on a commercial drone? [Chapter 6]

1.3 Contributions

The main contributions of this work are:

1. The creation of a domain specific programming language, which offers an abstraction

of the default drone controller functions into a set of commands (Section 3.1 and

Section 4.1).

2. The implementation of a simulator, using the Unity graphics engine, for the inter-

pretation of Flail code without requiring an expensive real drone (Section 3.3 and

Section 4.4).

3. Technical details on how to modify the hardware of a Cobra RC controller to accept

communication from an Arduino, which allows Flail code to control the microdrone

(Section 3.2.1).

4. The implementation of a path generator based on parametric curves, by using the

paradigm of first person piloting. This generator aids users in creating Flail code

based on more complex flight routes (Section 4.3).

5. The interactive creation of paths in a laboratory using the Vive hardware for Flail code

creation (Chapter 5).

6. Assessing the portability of Flail code by generating output for a Ground Station

(Chapter 6).
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1.4 Overview

Figure 1.3: Workflow for this research

This work is structured in the following manner; Chapter 2 will provide the related work

that motivated this research, Chapter 3 will cover the implementation of the time based

version of Flail and its use on RC microdrones, and Chapter 4 will cover the implementation

of the distance based version of Flail and the development and use of simulated test flight

patterns. Then, Chapter 5 will describe the use of gesture to generate Flail code, and

Chapter 6 will cover the portability and generation of flight paths for commercial drones.

Finally, Chapter 7 will conclude this work, by describing its overall contribution.

Figure 1.3 displays the workflow of this work. Each chapter will cover a part of the work-

flow, where specific sections will be highlighted to demonstrate the sections being covered in

that chapter.

5



Chapter 2

Background and Related Work

This chapter provides background information of work that relates to my chosen research

topic. This work is distributed amongst five distinct categories:

1. Traditional Methods to Control Drones

This category covers the most common methods of drone control. These usually involve

a variety of hand held controllers, with varying capabilities.

2. Programming languages for drones

There are a number of programming languages that are drone specific. These might

be domain specific languages or language libraries that allow drone connections.

3. Human robot interaction

This category covers the interaction between humans and robots, with an emphasis on

moving robots.

4. Programming by example

Programming by demonstration (PbD) is a method where users are capable of “teach-

ing” robotic mediums to follow tasks. The path generation aspect of this research can

be considered a simplified version of PbD, as users demonstrate their desired paths

without manually programming each individual trajectory.
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5. Non-traditional methods to control drones

Non-traditional methods for drone control is an active field of research. These involve

different control schemes that are not dependent on default handheld controllers. Em-

phasis will be given to exocentric/egocentric control and to semi-autonomous drones.

Flail can arguably be categorized as a non-traditional, programmatic method for drone

control.

2.1 Traditional Methods to Control Drones

Drones are most commonly controlled by a transmitter/remote control, a handheld device

that allows users to maneuver and adjust the setting of their UAV. Some drones might also

come with a software development kit, or SDK, that allows users to programmatically control

their drones.

2.1.1 Controller Based Schemes

The use of controllers is the most direct way to pilot drones; nonetheless, they present a

certain learning curve to new users. Drone movement is controlled by a pair of joysticks

that have to be used simultaneously to keep the drone aloft in a stable manner. Apart from

requiring a substantial learning step, this type of interface limits its user base as mobility

impaired people would be unable to manipulate the joysticks effectively.

For simplicity, I’m going to follow the general drone setup controller scheme where:

• The right joystick controls yaw and pitch – moves the drone left/right, forwards/back-

wards.

• The left joystick controls yaw and throttle – rotates the drone clockwise/counterclock-

wise and ascends/descends the drone.

7



2.2 Programming Languages for Drones

Programmatic drone control is an alternate method for users to interact with their drones.

This method allows users to control their drones by writing programs.

2.2.1 Domain Specific Languages for Drones

A domain specific language (DSL) is a programming language that is specialized in a specific

platform or domain [4]. Certain DSLs allow users to programmatically control the flight

trajectories or general capabilities of drones.

In 2015, Pinceroli et al. released Buzz, An Extensible Programming Language for Self-

Organizing Heterogeneous Robot Swarms [5]. Traditionally, programmers are required to

focus on individual entities of the swarm and encode their low level behavior to create a

swarm. By contrast, the approach taken by Buzz is to expose only the relevant parts of the

problem to solve, working with swarm formation and modification in an abstract manner.

Buzz lets programmers subdivide swarms into distinct groupings, treating them like first

class objects. Currently, no standardized platform exists that allow researchers to share and

reuse swarm behaviors. The design of Buzz is motivated to overcome the traditional methods

to interact with swarm behavior.

To the best of our knowledge, Buzz does not emphasize movement design and is mainly

suitable for swarm control. Buzz might be a starting point for the addition of swarming

capabilities to future versions of Flail.

Visual languages are another option for programmatic control. Tynker’s Parrot Drone

app [6], which has the end goal to help children learn how to code, is an example. The

application uses a block based visual language to direct the actions of the paired drone.

These commands vary from simple flight instructions, such as take off and move forward, to

basic logical concepts, such as looping and trigger events. Trigger events generally correspond

to changes in the drone’s state, such as successful landings, take offs, ect...

8



Tynker’s approach to path specification is fairly similar to Flail’s, where simple instruc-

tions can be combined to move the drone in specific ways. Flail currently does not have

trigger events. Flail, on the other hand, is able to generate paths based on user movements

and is able to create trajectories based on specific distances. Furthermore, a Flail program

can be passed on to a number of different drones, and is not limited to a single model or

brand.

2.2.2 Other Languages for Drones

Another possibility for programmatic control is to either add libraries or to extend already

existing programming languages. This benefits users who are already familiar with the

language, as they would not be required to learn new syntax in order to use the drone

capabilities.

A common occurrence is to use Mavlink or Ardupilot systems as intermediaries between

the language and the drone. Mavlink [7] is a lightweight messaging protocol system used to

communicate with small unmanned vehicles. It is most commonly used between a ground

control station (GCS) and unmanned vehicles. Mavlink is notably able to keep track of the

orientation of vehicles, their GPS location, and speed. Ardupilot [8] is open source software

known as an autopilot suite, capable of controlling a number of different unpiloted vehicles.

A language example that uses Mavlink as a communication medium is Drone-kit Python [9].

This Python API allows developers to create applications that run on onboard companion

computers (such as the Raspberry Pi) to communicate with the Ardupilot flight controller

using a low latency link. The API communicates with vehicles over MAVlink and as such is

compatible with any vehicles that communicate using the MAVlink protocol.

Position, speed, and other attributes can be accessed through the vehicle class. The

general position of the drone is represented by latitude and longitude coordinates relative to

the World Geodetic System 1984 (WGS84) coordinate system [10], with its altitude relative

to mean sea-level (MSL).

9



There is another well known Python API for drone control, known as the PS-Drone [11].

Differently from Drone-kit Python, this API is only capable of programming the AR.Drone

2.0. It was designed to be easy to learn while still offering the full set of functionalities of

the AR.Drone 2.0 including Sensor-Data (NavData), Configuration and Video-support.

Codeminders, on the other hand, released a Java API for AR drones [12] with the goal

of using Java to control Parrot’s AR.Drone without the use of native code. This project

did not use Parrot’s SDK, but instead implemented networking protocols directly in Java.

Most of the control scheme comes from ControlTower, a Java GUI that uses Playstation 3

controllers and a keyboard to control the drone.

ROS framework for the Bebop quadcopter [13] is an autonomous navigation framework

for the Bebop Quadcopter by Parrot Corporation. ROS, or Robot Operating System, is

robotics middleware [14], a set of software libraries that help users build robot applications.

Node AR drone [15] is an open source project that allows users to program the AR drone

using node.js. This project allows access to drone capabilities, such as its onboard camera

and flight control. Animation sequences are given in terms of a duration (in milliseconds)

and a command, e.g., animate(‘turnaround’, 1000). Instructions can be set as the drone

is in flight by sending over commands along with a speed value, e.g. forward: 0.5, which

makes the drone fly forwards at half its maximum speed. The control scheme used by Node

AR drone is similar to the time-based version of Flail. It is a time based scheme, where

instructions can be set and executed for a given duration.

2.3 Human Robot Interaction

Human Robot Interaction (HRI) is an area of study related to people’s behavior and attitudes

towards a robot’s interactive features. There are many different ways to address robotic

expression and interaction, but this section will emphasize interactions between humans and

robots in motion, with priority given to Human Drone Interaction (HDI) and how it pertains
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to motion planning.

There is a relatively recent survey paper (2013) by Hoffman et al. [16] regarding HRI

that includes a section on social robot navigation that is of interest. Mirri et al. [17] also

developed a survey paper regarding the current issues and challenges related to HDI, with

40 papers published between 2012 and 2019.

A common method to conduct robots is robotic teleoperation, or manually operated

robots. This method, however, comes with a pitfall as it may lead to increased cognitive

burden on the operator. Even so, Hooman et al. [18] state that this form of robotic opera-

tion affords a higher level of precision than most. They presented new interfaces that better

support perspective-taking for aerial robots. They proposed a framework for structuring the

design of AR interfaces that support HRI and used this framework to develop teleoperation

models that leverage ARHMD technology to provide visual feedback on camera capabil-

ities. Their work was shown to significantly improve objective measures of teleoperation

performance and speed while reducing crashes.

Hoffman et al. [19] developed a design process for interactive robots that bears expressive

movement at its center, arguing that robotic movement is essential to developing human-

robot comprehension. Their case studies included a wide range of expressive-center robots

including Shimon, a robotic mariba player; Travis, a robotic speaker dock listening compan-

ion; and a set of telepresence and animated robots. Each robotic medium was tested by

how easily people were able to understand their gestures in different scenarios. The authors’

conclusion is that a focus on movement design for interactive robots has the potential to

bring a breakthrough to robot integration in human society.

Motion is also useful in the communication of affective information. Sharma et al. [20]

explored how a flying quadrotor can modify its locomotion path to communicate affect to

people. The authors presented an adaptation of the Laban Effort System as a way to aid

the creation of expressive robots. They concluded with preliminary guidelines for designing

expressive robotic locomotion paths.
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Similarly, Wojciechowska et al. [21] considered how a drone’s way of conducting itself

affected how it was perceived by its user. Parcel delivery drones, for example, would have to

approach people in a different manner compared to a search-and-rescue drone. Their paper

presented a taxonomy for HDI user studies which surveys different methodologies from HDI

literature; investigating how proximity, speed, direction, and trajectory led to a comfortable

drone approach.

Aesthetically pleasing trajectory designs, on the other hand, are still difficult to create

when asked to respect the physical limitations of robots, especially when filming in dynamic

environments. Nageli et al. [22] proposed a method for the real-time generation of multi-

drone aerial cinematography motion plans. The authors propose a method for planning

aerial videography in clustered dynamic environments. Their method takes high-level plans

alongside image-based framing objectives as inputs. The input paths do not have to be

physically feasible as their method only uses the path for guidance.

2.4 Programming by Demonstration

Robot Learning from Demonstration [23] (LfD) or Robot Programming by Demonstration

(PbD) is a paradigm that allows robots to learn how to follow certain actions. This technique

approaches robot programming as something that can be extracted from simple observations,

or more specifically, the observation of human performances of certain movements, rather

than from the manual decomposition and programming of such movements and behaviors. As

such, the main idea of PbD is to allow users to teach robots new tasks without programming

them.

In the early 1980s there was an increased interest in PbD for robotics [24]. In its ini-

tial developmental stages, researchers used symbolic reasoning such as guiding or playback

methods, which relied on teleoperated or manual control, to perform PbD [25, 26].

The ideals of PbD are used to facilitate the programming of robotic functions. Consider a
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robot whose job is to prepare orange juice [23]. The task is comprised of a series of sub-tasks

such as cutting the orange, squeezing it in a cup, throwing the orange into the trash, and

serving the juice into a cup. As an added difficulty, the robot might also have to deal with

items being moved from their original locations.

Traditionally, a programmer would have to reason out a method that would allow the

robot to respond to changes in its scenario, no matter how unlikely. In contrast, PbD

techniques allow users to “program” the robot by demonstrating how it should perform

certain actions. If new failures arise, the users could then just perform new demonstrations.

LfD-PbD are not a record and replay technique, as it emphasizes learning at its core.

According to the Handbook of Robotics [24], there are three main benefits to using

user based interfaces for training robots to perform desired tasks. The first is that PbD or

imitation learning is a highly powerful tool in reducing the complexity of the search spaces

for learning. In other words, it is possible to reduce the search for ideal solutions when sifting

through a series of good or bad examples, by eliminating bad solutions from the search space.

Second, PbD minimizes the tedious task of manual programming, making interaction with

robots an accessible area to lay people.

Yu Wang Liu et al. [27] presented a novel augmented reality (AR) based interface for mo-

tion planning in a 3-axis glue dispenser via programming by demonstration. This interface

allows users to efficiently determine and demonstrate the dispenser motion in a demonstra-

tion task. The planning process is conducted within a virtual environment while allowing

them to determine the spatial relationship between the machine’s tip and the work plane

of a part. This prevents collisions between the machine and the work part and accelerated

positioning the dispenser tip in 3D space.

Andre Gaschler et al. [28] presented a novel augmented reality system for defining virtual

obstacles, specifying tool positions, and robot tasks. AR was used as an aid to the user’s

spatial perception and to help them better understand the robot’s capabilities. The user

is given a handheld pointing device for specifying waypoints for the robot and to trigger

13



corresponding actions.

Flail follows a simplified version of PbD, where the user “teaches” the drone how to follow

a desired path by sketching out trajectories. More complex versions of PbD generalize the

user’s demonstrations to form a robust program capable of dealing with new situations [29].

2.5 Non-traditional Methods to Control Drones

Considerable prior work has studied different manners in which users can interact and control

their drones. These techniques move away from the traditional drone joystick controller, and

often blend in aspects of augmented reality (AR) or virtual reality (VR).

2.5.1 Egocentric vs Exocentric Views

The usual method of piloting drones involves steering with a joystick-based controller, where

users can take an egocentric or exocentric approach to piloting. Exocentric mode occurs when

the pilot observes the drone from the ground while steering; and egocentric, or first person

viewpoint, occurs when the pilot flies based on the drone’s onboard camera stream [30]. It

is difficult to pilot in exocentric mode when occlusions are present, and it becomes nearly

impossible when the drone is lost from view. Switching over to egocentric mode, however,

brings about its own set of limitations due to the drone’s narrow field of view, which reduces

the user’s own perception of space. Both of these limitations further increase the risk of

crashes, especially for novice pilots.

Erat et al. [30] attempted to reduce flight hindrances that occur in traditional exocentric

piloting, by using VR to provide a synthetic exocentric view that allows users to better

visualize occlusions. This method dynamically adds a 3D model of the occluded territory

to the live video streamed by the drone. This addition redefines a user’s ability to remotely

pilot a drone by removing limitations to the user’s view point in occluded space. AR can also

be used to make the occluder partially transparent, giving the impression of X-ray vision.
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Kwangsu Cho et al. [31] addresses the issue of drone crashing caused by external pilot-

ing. Their hypothesis is that perspective misalignment occurs when externally piloting the

drone, due to the difficulty of relating the user’s egocentric perspective to the drone-centric

perspective. To address such an issue, they developed an egocentric interface that allowed

pilots to operate the drone from their own perspective regardless of the direction in which the

drone was flying. Their research demonstrated that removing the cognitive load of mental

rotations, generated by the process of aligning two different perspectives, increases a novice

user’s piloting success rate.

It is noticeable that the use of egocentric/exocentric views demonstrate interesting ap-

plications in drone control systems. Nonetheless, since this work does not involve visual

piloting, the use of AR and VR techniques were out of scope. These techniques can be

visited in future work.

2.6 Semi-autonomous Aerial Vehicles

An alternate approach to drone control is to use semi-autonomous properties as an aid, which

in this context is taken as a drone that has some autonomous properties but still requires a

human operator for its effective navigation. Such properties might involve collision detection

or environmental recognition, e.g., automatic detection of burning buildings.

Nico Li et al. [32] designed Flying Frustum, a 3D spatial interface that provides a remote

operator an increased level of human-UAV interaction and situational awareness. This inter-

face functions by using pen interaction on a physical model of a terrain, and that spatially

situates the information streaming from the UAVs onto the physical model.

Abeer Imdoukh et al. [33] developed an indoor fire proof UAV capable of handling dan-

gerous search and rescue operations within burning buildings. It is capable of carrying a fire

extinguisher and of searching for survivors in burning areas. The drone has mounted cam-

eras to aid their pilots in their navigation, allowing firefighters to pilot it at a safe distance.
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The use of semi-autonomous properties in drone control is appealing for future develop-

ments in Flail, more specifically, the implementation of collision detection during flights.

The drone could, for example, detect possible collisions and correct its flight trajectory to

prevent crashes while still maintaining its original course.
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Chapter 3

Flail: Time-based Motion

Flail is an alternate control scheme for drones and is capable of programatically pre-

specifying flight patterns for different vehicles. Flail is founded upon turtle graphics, a key
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feature in the LOGO programming language [34]. Turtle graphics are vector graphics that

use a relative cursor to specify movement. The beauty of turtle graphics stems from its

ability to combine a set of simple commands to generate complex paths. Flail’s abstraction

of drone movements is similar to the basic commands found in turtle graphics. Flail allows

drones to move forward, backwards, left, right, and to rotate about their z-axis. I added an

ascension and descension command to control the drone’s altitude during its flight.

As described in previous chapters, the goal of this research is to develop a language

capable of describing flight trajectories to different drones. This chapter will cover the first

stage of this implementation, with the goal of answering RQ1: “How should we design a

time-based programming language that allows us to describe movement paths for drones?”

There are a number of different ways to describe motion. One way is to focus on how

long each displacement took: the vehicle moved forwards for 3 seconds, then it moved to the

left for 2 seconds, and then backwards for 1 second. The time-based version of Flail, follows

this idea: it is a time-based method of describing movements in 3D space.

The first step to design such a language was to answer the following questions:

RQ1.1 How do we describe drone movements as instructions?

Drones are only capable of limited movements, as they have four degrees of freedom:

up and down movements (heaving), left and right (swaying) movements, forward and

back movements (surging), and left and right rotations (yawing) [35]. The most direct

approach is to describe each of these motions as an instruction: Forward, Backward,

Left, Right, Ascend, Descend, Rotate Left, and Rotate Right. These instructions

re-create the possible motions executed by a drone controller joystick.

RQ1.2 What time-based functions do we need?

When we describe motions based on time, we need to know how long each motion

takes. Should we describe this in terms of minutes? Seconds? Milliseconds? It is

common to describe time in short bursts, usually in terms of milliseconds and seconds,
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Command Meaning Example
PENDOWN Lower the pen down (to draw a line) PENDOWN

PENUP Lift the pen up (to not draw a line) PENUP

FORWARD n Move the turtle forward n steps Forward 50

BACKWARD n Move the turtle backwards n steps Backward 30

LEFT n Turn the turtle left by n degrees Left 90

RIGHT n Turn the turtle right by n degrees RIGHT 45

REPEAT n
ENDREPEAT

Commands in between these lines should be
repeated n times

REPEAT 4

FORWARD 20

RIGHT 90

ENDREPEAT

Table 3.1: Partial list of LOGO commands [37]

which is the approach taken by the time-based version of Flail. Two wait functions

were added: wait(), which takes an integer value for seconds, and waitMili(), which

takes an integer value for milliseconds.

This chapter will focus on developments of Flail. At this stage only manually written

Flail programs are accepted as inputs, and the Flail translator is only capable of outputting

byte files.

3.1 Flail Structure

The initial approach for Flail was based on the LOGO programming language. LOGO,

more widely known for its use of turtle graphics, is an educational programming language

developed in 1967 as a means to teach children computer programming [36]. In LOGO, a

cursor, also known as a turtle, can be controlled through a set of commands (as shown in

Table 3.1), allowing it to move around the screen (2D space) in a number of different ways.

The beauty of LOGO is that even though its commands are simple, it is still capable of

generating complex patterns.

The turtle used in LOGO was initially conceived as a turtle-shaped robot with a pen

attached to its head, that could be lowered and raised as required. The turtle was the ideal

medium to teach children programming, as they could easily figure out where the front of
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Command Meaning Example
Ascend (float in-
tensity)

Ascend the drone at the given speed: (inten-
sity × drone’s max speed)

Ascend(0.75)

Descend (float
intensity)

Descend the drone at the given speed: (in-
tensity × drone’s max speed)

Descend(0.90)

Forward (float
intensity)

Move the drone forward at the given speed:
(intensity × drone’s max speed)

Forward(0.35)

Backward (float
intensity)

Move the drone backwards at the given
speed: (intensity × drone’s max speed)

Backward(0.20)

Left (float inten-
sity)

Move the drone to the left at the given speed:
(intensity × drone’s max speed)

Left(0.75)

Right (float in-
tensity)

Move the drone to the right at the given
speed: (intensity × drone’s max speed)

Right(0.75)

YawLeft (float
intensity)

Rotate the drone counter-clockwise along
its Z-axis at the given speed: (intensity ×
drone’s max speed)

YawLeft(0.5)

YawRight (float
intensity)

Rotate the drone clockwise along its Z-axis
at the given speed: (intensity × drone’s max
speed)

YawRight(0.5)

Wait (int time) Wait ‘time’ seconds before moving onto the
next command

Wait(10)

WaitMili (int
time)

Wait ‘time’ milliseconds before moving onto
the next command

WaitMili(650)

Table 3.2: List of commands found in the time-based version of Flail. Note that the maximum
speed of the drone would vary from drone to drone and could vary depending on which
movement the drone was performing.

the robot was and direct it as desired [38]. Even though turtle robots and drones are two

different controllable mediums, their expected movement within space is similar. The main

difference is that Flail functions in 3D space as opposed to 2D space. This was done by

the addition of an “ascend” and “descend” command, that allows the drone to raise and

lower itself, respectively, along its z-axis. Flail’s initial commands followed the same ideals

as LOGO’s: they were intended to be simple while allowing the user to easily coordinate the

drone during its flight. The commands found in the time-based version of Flail are displayed

in table 3.2.

As it can be noted, a great chunk of the instructions rely on the ‘intensity’ parameter.

This parameter is used to control the drone’s speed. For example, suppose a drone model
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had a maximum speed of 80 km/h and it was instructed to ascend at 0.20, or 20%, of its

maximum speed. The drone would then ascend at 16 km/h. This parameter was used in

order to allow some control over the drone’s speed during specific movements. This concept,

however, does not account for drone latency or acceleration times.

3.1.1 Designing Flail

Flail is an interpreted language implemented in C, capable of outputting domain specific files

with flight instructions for different drones. The translator expects a Flail file containing a

trajectory described by the instructions found in Table 3.2.

At this stage, the Flail file was expected to look similar to the following:

Ascend(0.5);

Wait(1); # Wait for one second - will ascend for a single second

Ascend(0.0); # Stop ascent

Forward(0.5);

WaitMili(800); # Wait for 800 milliseconds - will move forward for 800 milliseconds

Forward(0.0);

Or in other words, instructions would be set at a given intensity (e.g., Ascend(0.5)), and

after a certain amount of time (e.g., Wait(1) – one second), would be unset (e.g., Ascend

(0.0)). Any number of instructions could be set at any given time, as instructions would

only be reset, or stopped, when an intensity value of 0.0 was passed in as a parameter. As

such, a program could have the forward, left, and ascend instructions set simultaneously, for

example. The only limitation to this is that Flail does not allow conflicting instructions to be

set at the same time, throwing a compile-time error when it is attempted (e.g., Left(0.5);

Right(0.7);).
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Below is a more complicated Flail file. Suppose that the input file rectangle.Flail was

passed in, which contains the following:

# Make drone fly in a rectangular pattern

Ascend(0.6);

Wait(2); # Wait for two seconds - will ascend for two seconds

Ascend(0.0); # Stop ascent

Forward(0.5);

WaitMili(800); # Wait for 800 milliseconds - will move forward for 800 milliseconds

Forward(0.0);

Right(0.5);

Wait(1);

Right(0.0);

Backward(0.5);

WaitMili(800);

Backward(0.0);

Left(0.5);

Wait(1);

Left(0.0);

Descend(0.5);

Wait(2);
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Descend(0.0);

When the translator receives the file, it first performs error and syntax checks, including:

1. Are all commands separated by semicolons?

2. Are all commands written correctly?

3. Are there any “open” commands when the program exits? (For instance, a forward

command that was never reset.)

4. Are there conflicting instructions? (For instance, a left and right command that were

set simultaneously.)

After passing the tests, the translator proceeds to split each instruction at the semicolon,

resulting in a token of the following format: (instruction, parameter). At this stage, each

parameter is expected to be an integer value, allowing it to be easily clustered into chunks

of bytes (where an unsigned byte can represent up to integer value 255). Each instruction is

mapped to a specific byte value as described below.

// Association of specific bytes to instructions

const Instructions inst = {

.ascend = 0x1,

.forward = 0x2,

.backward = 0x3,

.left = 0x4,

.right = 0x5,

.yawL = 0x6,
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.yawR = 0x7,

.descend = 0x8,

.wait = 0x9,

.waitMili = 0xA

};

The output file is composed of the byte values of each (instruction, parameter) pair. The

instruction is directly converted from the above mapping, while the parameter is converted

into bytes. If the parameter is larger than 255, it is split up into multiple bytes until the

full amount can be represented, where each byte is treated as the parameter for a smaller

function call. For example, if the command WaitMili(800) were to be converted into bytes,

the following would occur:

• WaitMili corresponds to byte 0x9;

• 800 would be split up into the hex values:

0xFF, 0xFF, 0xFF, 0x23, since 255× 3 + 35 = 800;

• Result: 0x9, 0xFF, 0x9, 0xFF, 0x9, 0xFF, 0x9, 0x23.

Of course, it is assumed that users would use the time function that more closely met

their needs. It would be more space efficient to call the wait function for a 9 second move,

than the waitMili function for 9000 ms.
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3.2 Evaluation of the Time-based version of Flail

3.2.1 Establishing Communication Between a Microdrone and an

Arduino

The first practical test used to examine the capabilities of Flail involved the use of a very

inexpensive drone. The chosen drone was the R/C Micro Drone from Cobra RC Toys, a

C$40 toy drone. The set comes with a small drone and an RC controller. This drone, not

surprisingly, did not have an API to allow for its programmatic control, requiring hardware

modifications to allow the controller to receive signals from the computer.

An Arduino was used as a mediator between the controller and the computer. The

original controller is displayed in Figure 3.1. The Ascend/Descend/Yaw Left/Yaw Right

(A/D/YL/RR) joystick, as the name implies, is responsible for ascending and descending

the drone, as well as rotating it along its yaw axis. Furthermore, it is used to establish the

initial connection between the drone and the controller. After turning on both the controller

and the drone, the A/D/YL/RR joystick has to be moved forwards and backwards at least

once to connect the drone to the controller.

A few things had to be tweaked within the controller to allow the board to receive specific

signals from the computer. To do so, I opened the controller to modify its circuit board as

shown in Figures 3.2 and 3.3.

The first thing to do was to disconnect the power source of the controller and to hook up

two new wires in its place. This would allow the Arduino to power the controller as opposed

to using external battery sources.

After performing some tests with the multimeter, it could be stated that Pin 4 of the

A/D/YL/RR joystick is responsible for the drone’s throttle, while pin 8 of the same joystick

is responsible for its yaw rotations. Pin 4 from the F/B/L/R joystick controls the drone’s

forward and backwards motion, while pin 8 moves the drone left and right. These four pins

had to be disconnected to allow the Arduino to send the signals in its stead. To do so,
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Figure 3.1: RC drone controller with its joysticks labeled. A/D/YL/RR controls the ascen-
sion, descension, and left and right yaw. F/B/L/R controls the drone’s forward, backward,
left, and right movement.

Figure 3.2: Front of the board Figure 3.3: Back of the board

the two joysticks had to be unsoldered, have their respective pins peeled back, and then

resoldered to their original position. The final stage required soldering four new wires to the

circuit board in place of the peeled-back pins.

To send controlled voltage signals from the Arduino to the controller, low pass filters

were used as shown in Figure 3.4. The low pass filters were responsible for averaging out the
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Figure 3.4: Arduino/controller circuit diagram

voltage output of the Arduino.

3.2.2 Evaluating Drone Flight Patterns

A number of flight tests were performed on the RC drone to see whether it was capable

of stably following patterns. Considering how poorly they performed in the initial tests

this seemed unlikely. Each flight was tracked by the VICON, a motion capture system, to

facilitate examination. Four motion tracking beads were used in a square formation as shown
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Figure 3.5: Bead formation as shown on the RC drone.

in Figure 3.5.

The symmetrical outline of the beads prevented the capture of the drone’s orientation,

only allowing the measurement of the drone’s position during its flight. Due to the drone’s

lightweight and weak throttle power, no other bead formation was possible, as asymmetrical

patterns tilted the drone and more than four beads prevented lift-off.

Three main tests were performed, each focusing on a different flight pattern. The first

test made the drone hop three times in place; the second made the drone fly left and right;

and the last, a partial cube pattern. The coordinates of the RC drone’s flight, as captured

by the VICON, were stored to a text file. To clean up the captured trajectories, each path

was decimated1 and interpolated.2 These techniques will be further examined in Chapter 5.

For the three hop test, the drone was expected to remain reasonably stable while hopping

three times in place. Nonetheless, the actual flight showed unexpected displacements during

1Decimated – coordinates that are closer than an epsilon value are removed. For these trajectories, an
epsilon = 10 was chosen.

2 Interpolated – The Catmull Rom Spline technique was used.
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Figure 3.6: Three Hops RC Drone trajectory

its run (Figure 3.6).

The left-right test also demonstrated instability. The drone was expected to perform

two motions: first: to rise up, move to the left, and lower itself down; second: to rise up

again, move to the right, and lower itself to the ground. As it can be seen from Figure 3.7,

substantial fluctuations occurred in the drone movement.

Finally, the partial cube test was expected to draw two parallel faces of a cube. The

actual flight was shown to contain a large amount of displacement and instability as shown

in Figure 3.8.

The results of these flight tests were unsatisfactory and further demonstrated the un-

suitability of the RC drones for continuous flights. Each flown trajectory was noticeably

unstable when compared to the expected flight paths shown in the following section.
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3.3 Simulator

Since I was unable to fully test Flail with the microdrones, I created a Unity simulator to

demonstrate the ideal flight patterns the drones should have followed. As stated, this version

of Flail was time-based, and as such, instructions were triggered based on time.

A coroutine was used to parallelize the interpretation of the Flail file along with the

physics control of the drone. The coroutine was responsible for determining which instruc-

tions were currently active/inactive, and in turn, having the Unity update function trig-

ger/untrigger the respective physics controls.

The state of each instruction was kept track of by a set of global Boolean variables corre-

sponding to each of the main instructions of Flail: ascend, forward, back, left, right, yawLeft,

yawRight, and descend. When an instruction was set to true, the simulator interpreted that

as an active instruction and triggered the corresponding drone control.

Three Flail programs were given to the simulator to visualize the expected flight paths

from the three hops, left-right, and partial cube tests. The coordinates of the virtual drone

were stored and graphed with gnuplot. The expected drone flight trajectories are shown in

Figures 3.9, 3.10, and 3.11; the measured flights are shown beside each for comparison.

3.4 Discussion

It would appear that the toy RC drone has difficulties maintaining its stability when a

number of directional changes are performed consecutively. The flight pattern that displayed

the most amount of stability was the three hops test, where the drone was only expected to

rise and lower itself consecutively. When the drone was told to fly in a somewhat cube-like

shape, it became unstable. The drone had difficulties flying in straight lines, most likely

due to its light weight and weak frame. Every crash would subsequently dent its frame and

propellers, and after a while, the drone was unable to fly straight.

The selected RC drone displayed a number of problematic characteristics during its us-
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age and was deemed not suitable for future tests. The drone is extremely lightweight and

possesses a weak engine, and as such, any additional weight distorted its flight trajectory.

Its battery was also fairly weak, being able to maintain flight for only about 8 minutes.

Strangely enough, when the batteries were close to being drained, the drone would engage

in what appeared to be a drunken stupor. It would become unable to fly in a straight line

and would proceed to twirl in circles until its battery completely drained.

Overall, time-based functions, although fairly intuitive descriptors for motion, demon-

strated limitations when projecting complex flight patterns. It is hard for users to compute

distance based on time. Or more specifically, it is hard to estimate how far the drone will

move based on how long it moved.

Furthermore, it is hard to define the scale of trajectories. There isn’t really an intuitive

way of using time to constrain the boundaries of a drone’s flight. For example, forcing

the drone to fly within a 1m2 area is difficult when limited to time-based functions. This

limitation results in many crashes as the drone is incapable of knowing when it is about to

hit an obstacle.

3.5 Summary

In this chapter, the implementation of the time-based version of Flail was looked at in detail.

This chapter also included the reasoning behind the implementation of time-based functions

to describe movement.

A Cobra RC microdrone was used to test out the language. These toy drones were

deemed unsuitable for future flight tests due to their instability. The hardware modification

that allowed an Arduino board to communicate with the RC drones was also discussed in

detail.

The RC drones were shown to be wobbly during flight. Its delicate frame would quickly

bend in crashes, further preventing it from flying in straight lines. It was also unable to

31



accurately replicate changes in directions when receiving commands sent by the Arduino.
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Figure 3.7: Left-Right RC Drone trajectory

Figure 3.8: Partial Cube RC Drone trajectory
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Figure 3.9: Three Hops simulated trajectory
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Figure 3.10: Left-Right simulated trajectory
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Figure 3.11: Partial Cube simulated trajectory
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Chapter 4

Flail: Distance-based Motion

One issue that was presented in Chapter 3 was the difficulty to control how far a drone

would fly. As such, this chapter provides an alternative to time-based movement, switching
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gears to focus on distance-based movement. The goal of this chapter is to answer RQ2:

“How do we create a distance-based DSL capable of interacting with drones?”

As opposed to describing motion based on how long each movement takes, we could

describe motion according to how far the vehicle traversed. For instance: the vehicle moved

forwards for 20 cm, then it moved to the left for 15 cm, and then back for 10 cm. The

distance-based version of Flail follows this idea: it is a distance-based method of describing

movements in 3D space.

The first step to designing these additions to the language was to answer the following

questions:

RQ2.1 How can we specify distance in Flail and what kind of distance functions would we

need?

When describing motion in terms of distance, we need to first know how far the drone

has to travel. Furthermore, what unit of measurement should we use? Should we

describe its motion in centimeters? Meters? It’s hard to say, especially since the actual

path described by the user might have to follow different scales in different scenarios.

The same path might be flown in a room constrained by walls and again in an open

space, where the drone could move more freely. In such situations, the interpretation

for how much each distance unit should be treated as should be determined by the

user.

The distance parameter was implemented as a single floating point number, e.g.,

Forward(10.5), or move forward by 10.5 units, where the unit is determined by the

user. A setMode method was implemented that allows users to alternate between the

time and distance-based version of Flail.

This chapter will focus on further developments to the Flail translator. A path gen-

eration script was developed to generate Flail code based on parametric functions in

order to create more complex trajectories. Further improvements were also made to
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the simulator to make it accept distance-based parameters.

RQ2.2 How can we specify the scale of a trajectory path?

One consideration that has to be taken when working with distances is the scale of

the trajectory. Or in other words, the dimensions of the generated path. To allow for

the modification of the scale, the path generation script contains a scale parameter

that allows the user to modify the scale of the generated paths. If a user is manually

writing a Flail program, however, they would be responsible for calculating their own

scaling system. For example, the simulator relies on Unity world-space coordinates,

while the ground station relies on latitude/longitude coordinates. The user would have

to determine which scale would better suit their needs for each of these outputs.

RQ2.3 How can we repeat movements?

Patterns are usually comprised of a repeated set of motions. The ability to repeat

instructions was lacking in the time-based version of Flail. The distance-based version,

introduced the ability to add basic loops through the Repeat instruction.

4.1 Introducing Distance Parameters to Flail

The time-based version of Flail was a good start, but it did suffer from some limitations. The

main issue was its control scheme, which was time and speed dependent. These parameters

aren’t ideal when attempting to control how far a drone should fly at any given point in

time. Another complication is that drones of different models don’t have the same default

speed, making it even harder to predict the travel distance. As such, constraining the flight

pattern within certain boundaries, such as making the drone fly within the constraints of a

room, became difficult.

To get around this issue, a new mode was implemented in the second iteration of Flail,

dubbed precision mode. In this mode, functions are controlled by distance as opposed to
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time. It would be the user’s responsibility to adjust the scaling system in order to control

how far a unit in precision mode would correspond to in their desired output domain.

To alternate between the two different modes, a user can simply use the SetMode(mode)

instruction. The mode parameter is either intensity for time based control, or precision,

for distance-based control. Apart from this extra mode, the distance-based version of Flail

also introduces looping. A new Repeat instruction was implemented. This function allows

chunks of code to be iterated, or repeated, a specified number of times.

SetMode(precision);

Repeat 3 {

Forward(10);

Left(5);

}

This code snippet sets the translator to precision mode, meaning patterns will be defined

by distance. Here, the loop will repeat the instructions Forward(10) and Left(5) three

times.

Precision mode expects each function to receive specific distance values. However, there is

a chance that higher precision will be required at times, especially for the rotation commands

which might require floating point precision. Flail, however, was developed with the idea

of treating each parameter as a byte in order to reduce the size of the output program. A

single unsigned byte could represent an integer up to 25510. Larger integers could then be

split into chunks of 255 as necessary. Floating point values, on the other hand, require more

than a single byte to represent a useful range of values (modern floating point representation

will typically use 8 bytes).

To get around this limitation when using floating point numbers, binary scaling was used

to represent floating point numbers in the Flail system. Binary scaling is a technique that

implements pseudo floating point operations by using integer arithmetic [39]. Numbers tend
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to be more precise when using binary scaling crompared to floating point values with the

same amount of bits. Nonetheless, floating point number representations using binary scaling

are limited to a certain range, which make them susceptible to overflows and underflows.

The scaling technique that was selected for Flail is known as binary angle measurement,

a number based on the property that adding 180◦ to any angle is akin to taking its two’s

complement [40].

4.1.1 Binary Angle Measurements

Rotations are specified using angles in the range [0◦, 360◦). Unsigned Binary Angular Mea-

surements, or UBAM, can represent angles between 0◦ and 360◦, while BAM can represent

angles between −180◦ and 180◦.

UBAM data words are specifically designed to represent up to 360◦ of angular displace-

ments in binary form, often in steps or increments of the LSB value (0.0055◦ for a 16 bit

word), as demonstrated by the table below:

BAM b i t t ab l e .

# 0 1 2 3 4 5

bam bi t tab l e = [ 0 .0055 , 0 .0109 , 0 .0219 , 0 .0439 , 0 . 088 , 0 .1757 ,

# 6 7 8 9 10 11

0 .3515 , 0 . 703 , 1 . 406 , 2 .8125 , 5 . 625 , 11 .250 ,

# 12 13 14 15

22 . 5 , 45 . 0 , 90 . 0 , 180 .0 ]

LSB = bam bi t tab l e [ 0 ]

MSB = bam bi t tab l e [ 1 5 ]

This 16-bit word 11001000 00000000 (b15 × 215+, . . . ,+ b0 × 20) can represent a 281.25◦

angle:
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281.25 = 180 + 90 + 11.25

float2UBAM(281.25) = (1 << 15) + (1 << 14) + (1 << 11) =

215 + 214 + 211 = 51200

When set to one, the LSB (Least Significant Bit) is equal to 0.0055◦, while the MSB

(Most Significant Bit) is equal to 180◦. The MSB value represents half the maximum value

that may be transmitted.

When all 16 bits are set:

• an angle greater than 359.9939◦ is indicated;

• their sum is 359.9939◦, and corresponds to the maximum quantity that can be trans-

mitted.

When all bits in the UBAM data word are clear (with zeros), a 0◦ angle is represented.

UBAM words are also used to transmit non-angular values, such as range, length or

height. When non-angular values are being used, the LSB value contains the smallest step,

or increment of the quantity being transmitted [41].

## Word size for BAM.

WSIZE = len(bam_bit_table)-1

## Convert a float number to an

# Unsigned Binary Angular Measurement (UBAM).

# In the C language, integer overflow behavior is

# different regarding the integer signedness.

#

# Two situations arise: (Basics of Integer Overflow)

42



# - signed integer overflow : undefined behavior

# - unsigned integer overflow : safely wraps around

# (UINT_MAX + 1 gives 0)

#

# @param num a float number.

# @return an Unsigned short integer [0 to 65535]

# corresponding to an angle [0 to 360).

#

def float2UBAM (num):

#num %= 360

res = numpy.uint16(0)

for i in range(WSIZE, -1, -1):

if num >= bam_bit_table[i]:

num -= bam_bit_table[i]

res += numpy.uint16(1<<i)

return res

## Wraps an angle to +- 180

wrapPi = lambda x: x - 360 * ((x + 180) // 360)

## Convert a float number to a signed Binary Angular Measurement (BAM).

#

# @param _num a float number.

# @return a Short Integer [-32768 to 32767]

# corresponding to an angle [-180 to 180).

#

def float2BAM (_num):
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_num = wrapPi(_num)

# bring the sign back.

res = numpy.int16(float2UBAM(abs(_num)))

return res if _num > 0 else -res

Converting back a BAM number b to a float is very simple:

sum(v × ((b >> i) & 1) for i,v in enumerate(bam bit table)) =

(180 b15 + 90 b14 + 45 b13 + 22.5 b12 + · · ·+ 0.0055 b0) =

180 (b15 + b14 2−1 + b13 2−2 + b12 2−3 + · · ·+ b0 2−15) =

180 × 2−15 (b15 215 + b14 214 + b13 213 + b12 212 + · · ·+ b0) =

180× 2−15 × b

(4.1)

Therefore, it is just a question of multiplying the BAM number b by: 180 × 2−15 =

MSB × 2−15 = LSB.

4.2 Constraining Flail Output Sizes

One of the issues presented in the last couple of chapters was the size of the output file.

Flail breaks down large integer values into multiple bytes, treating each chunk as a smaller

instruction call. This rapidly increases the size of the output file.

This issue is especially visible when binary scaling is used, since a small floating point

number can be converted into a rather large integer. For example, 281.25 would be converted

into the integer value 51200. Flail would interpret this value as chunks of 201 bytes (51200

= 200×255 + 200). Moreover, Flail associates each parameter chunk with its respective

instruction byte, expanding the 201 bytes into 402 bytes. This approach quickly increases

the size of the output.
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To prevent incredibly large files from being generated, an extra instruction was imple-

mented, called repeatNextInstructionFor. This instruction is responsible for repeating

the instruction that comes after it n times. This instruction is not accessible to users and is

automatically used by the translator when an instruction is to be broken into various byte

chunks.

The updated byte association list is now:

const I n s t r u c t i o n s i n s t = {

. ascend = 0x1 ,

. forward = 0x2 ,

. backward = 0x3 ,

. l e f t = 0x4 ,

. r i g h t = 0x5 ,

. yawL = 0x6 ,

. yawR = 0x7 ,

. descend = 0x8 ,

. wait = 0x9 ,

. wa i tMi l i = 0xA,

. setMode = 0xB ,

. r epeatNext Ins t ruc t i onFor = 0xC

} ;

Imagine that the following movement call was made: Forward(51200). By using the

repeatNextInstructionFor instruction, this call will be interpreted as:

0xc, 0x200, 0x8, 0x255, 0x8, 0x200

Or, repeat the next instruction (Forward(255)) 200 times and then execute Forward(200).

The use of this instruction effectively cuts 402 bytes down to 6 bytes. This procedure
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limits the maximum size an instruction can take to 6 bytes.

4.3 Path Generation

I wrote a Python script to generate a set of precomputed curves (or trajectories) to test the

simulator. This script uses polar equations to create the trajectories, and generates a Flail

output file that contains the corresponding instructions needed to pilot the drone to follow

the path. The output program executes only Forward and Yaw instructions. Therefore, one

could imagine controlling a plane or a drone as if they were flying it with a remote controller.

Figure 4.1: Polar coordinate depiction for generic point P

As a brief recap, the polar coordinate system uses an (r, θ) pair to represent points, where

r is the distance form point P to the origin O, and θ is the angle formed between the positive

X direction and segment
−→
OP , as shown in Figure 4.1 [42]. Polar coordinates were ideal to

use since the path generation script only calculates the amount that the drone has to rotate

and move forward by to reach the next point in the sequence.

To draw polar equations by means of a vector system, such as Python’s turtle graphics,

we should keep track of three points: P0 = (x0, y0), P1 = (x1, y1), and P2 = (x2, y2). Vector

−−→
P0P1 is the previously calculated movement segment and vector

−−→
P1P2 is the current segment.
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Figure 4.2: Flail’s Interface
Figure 4.3: Oscar’s Butterfly, as drawn by the
path generation script

For the first point, we need the angle α ∈ [0, 2π) between the x-axis and the vector

−−→
P0P1 : α = atan2(y0 − y1, x0 − x1) + π

• atan2(y, x)→ α ∈ (-π, π], returns a value between −π and π by default and,

• atan2(−y,−x) + π → α ∈ [0, 2π), returns a value between 0 and 2π (since we want to

use the UBAM procedure, as described in Section 4.1).

First, we calculate the angle γ between these two segments, by using the dot product:

c = cos(γ) =

−−→
P0P1

|P0P1|
·
−−→
P1P2

|P1P2|
=

(x1 − x0)(x2 − x1) + (y1 − y0)(y2 − y1)
((x1 − x0)2 + (y1 − y0)2)((x2 − x1)2 + (y2 − y1)2)1/2

γ = acos(min(max(c,-1), 1))

(4.2)

The turtle makes a left or right turn, based on the sign of the cross product of the two

segments:
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Figure 4.4: An iteration of the vector movement calculation, for the previous vector
−−→
P0P1

and current vector
−−→
P1P2.

−−→
P0P1 ×

−−→
P1P2 =

(x1 − x0, y1 − y0)× (x2 − x1, y2 − y1) =

(x1 − x0)(y2 − y1)− (y1 − y0)(x2 − x1),

< 0→ right turn

> 0→ left turn

Then, the turtle moves forward by a distance equal to the length of the current segment:

dist(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 (4.3)

All the equations are multiplied by a scale factor, so we can control the coordinate

values. As a consequence, we adjust the world coordinates in turtle graphics, to make sure

the drawn curves maintain the same size. Angles are represented by UBAM, and distances

by BAM [43]. As mentioned, there is a chance for underflows/overflows. Distances can

overflow if a length is outside the range [-180, 180), or underflow, if the scale is too small
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(less than 3.0), since 16 bits is not enough for such a small representation. The default scale

is 80.0 for a square window of 680 pixels. Therefore, the world coordinate length and height

are set to (scale× 8.5).

Figure 4.5: Original 2D Archimedean spiral curve

Figure 4.6: Modified Archimedean spiral to be a 3D curve

Even though this path generation script generates 2D paths, it is easy to modify the

generated 2D curve to become a 3D path. Consider the double spiral path shown in Figure
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4.5, which can be turned into a 3D curve by simply adding a z-coordinate. In this case, the

calculated θ angle was used as the z-coordinate. Therefore, it is possible to create 3D paths

as well.

4.4 Incorporation of Precision Mode to the Simulator

As demonstrated in Chapter 3, there are a number of issues associated with the selected RC

microdrones. Due to their instability, it was decided that they would not be used again for

evaluation purposes.

As such, for this chapter, the evaluation of the distance-based version of Flail will be

limited to the simulator presented in Chapter 3. The Unity simulator had to undergo a

few modifications to accept the newly added precision mode. The simulator described in

Chapter 3 only considered time based functions, and as such, only required a single coroutine

to set/unset currently active instructions. In precision mode, however, the drone model is

controlled by distance, meaning that it can only move onto the next instruction if the given

target distance has been reached.

As Unity’s update function is executed every frame and was responsible for moving the

virtual drone, I had to make sure that the program only moved on to the next instruction

when the drone reached the distance set by the current instruction. A queue was used to

precompute the Flail file and each (instruction,parameter) was stored in an object named

DroneAction.

DroneAction {

// The instruction attributed to this action

private int instruction;

// Drone velocity for this given action

private int intensity;
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// The distance that the drone has to traverse

private float distance;

// Has the drone reached the target distance?

private bool distanceReached;

};

The coroutine InterpretActionList is responsible for dequeuing one element at a time

from the DroneAction queue and performing the corresponding instruction. The routine will

wait until the designated distance has been traversed to unset the instruction and move on

to the next DroneAction object.

The instructions found in Flail will either translate or rotate the drone. In Unity, object

positions are described by vectors and rotations by quaternions. To check to see whether a

translation has been completed, I compared the distance between the drone’s current position

and its target destination by using the method Vector3.Distance, which returns the distance

between two vectors. If the target destination has been reached, the distanceReached flag

in the current DroneAction will be set, and the next instruction will be read.

Rotations, on the other hand, are deemed to be completed when the model finishes

rotating about a given angle. To check the current rotation status, the Quaternion.Angle

method was used, which returns the angle between two quaternions. If the distance between

the drone’s current rotation and the target rotation is less than the empirically decided value,

0.5, the distanceReached flag is set.

Further modifications included a modified playground for the drone, as depicted in Figure

4.7. Terrain and environment objects were added to give the user reference points for the

drone’s position in space.
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Figure 4.7: Additions to the simulator’s play area. The simulator’s view was separated into
top down and side view to aid the user in examining the drone’s flight path.

4.5 Evaluation

To evaluate Flail’s precision mode, the script Polar.py, presented in Section 4.3, was used.

Polar.py contains a number of parametric equations that can be used by Flail to describe

increasingly complex flight patterns. These equations vary from a straightforward circle to

more complex designs such as the Cochleoid shown in Figure 4.8.

The script is able to output a Flail file that describes the drone motion necessary to

follow the selected pattern. The output can then be fed into the Unity simulator to examine

how a drone would ideally interpret such a path.

The double loop pattern as shown in Figure 4.9 was chosen as a flight test path. The vir-

tual drone was shown to fly the path accurately as demonstrated in Figure 4.10. I considered

this test a success.

Nonetheless, precision mode is currently a bit of a hassle for users to use, as it either
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Figure 4.8: Cochleoid curve as generated by Polar.py. The red section of the graph rep-
resents angles in the negative range, while the blue section represents positive angles. The
box surrounding the graph is the generated bounding box which is used to demonstrate the
scale of the graph.

requires the manual computation of distances for their desired trajectories, or to mathemat-

ically compute equations to describe paths. The first approach limits the complexity of the

pattern, as manually calculating distances for large patterns can become taxing for users.

The second approach requires the parametric equation of the desired curve, which can be

hard to figure out for complex curves.

4.6 Summary

This chapter covered Flail’s precision mode, a distance-based method to describe trajectories.

This mode usually requires more precision than an integer can provide, oftentimes requiring
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Figure 4.9: Double Loop as shown in
Polar.py.

Figure 4.10: Double Loop as flown
by the virtual drone

floating point numbers. However, Flail’s output is composed of bytes preventing the direct

use of floating point numbers. Binary scaling was used to get around such limitations,

allowing floating point numbers to be represented as integers.

The distance-based interpretation of movement resulted in a more intuitive approach

to design flight patterns, as trajectories could now be modeled as mathematical functions.

Nonetheless, this approach is still not intuitive enough to allow users to easily create their

own unique trajectories, as more complex patterns still require the step by step computation

of distances.
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Chapter 5

Towards the Interactive Generation of

Flail Code
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One of the difficulties of using Flail is that complex trajectories will require more extensive

code. Imagine that a user wanted to calculate a trajectory similar to the intricate star pattern

shown in Figure 5.1.

Figure 5.1: Star pattern as generated by Polar.py

The trajectory for such a pattern is composed of a large amount of short rotations and

forward movements, which would be tedious to calculate by hand.

As such, this chapter will focus on answering RQ3: How can we use gestures to simplify

the generation of Flail code? Users may be unable or unwilling to write more extensive code

to describe their desired paths, making the use of gestures a more intuitive approach for path

description. The idea is to have users use a Vive wand to specify the basis for a trajectory.

Furthermore, this chapter will use the HTC Vive to generate trajectories. The path

generation script was updated to generate Flail code based on HTC Vive data. The resultant

Flail program will be visualized with the Unity simulator.

5.1 The Vive

As shown in Section 4.3, one way to describe trajectories is to use a parametric function as

a basis for the path. Curves of unknown parametrization, however, are difficult to recreate
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which limits the use of the script.

This chapter will demonstrate the use of the HTC Vive, a virtual reality system, to aid

users in drawing paths in 3D space. The Vive can detect motion limited to its “play area”,

which has a diagonal area of up to 5m (16 ft 4 in). For a room-scale setup, a minimum play

area of 2m x 1.5m (6ft 6in x 5ft) is required [44].

The Vive comes with a controller that allows users to wirelessly interact with the virtual

world provided by the Vive. These controllers are trackable objects and can be used to keep

track of their position within the play area.

The idea is to allow users to gesture what path the drone should follow by moving the

controller around. The Vive will keep track of all points drawn by the user, and this list

will then be fed into the path generation script (presented in Section 4.3) to generate Flail

motions.

5.1.1 Acquiring Vive Data

The HTC Vive was used to capture curves drawn in 3D space and the Vive wand was used

as the gesture medium. The Vive kept track of the wand’s x, y, z coordinates within the

play area and Unity stored the coordinates to a text file.

There were three main setups for the trajectories as shown in the Figures 5.2, 5.3, and

5.4. For each setup, paths were generated by placing the Vive wand on the lines and tracing

them out.

5.1.2 Cleaning and Smoothing the Data

The data points acquired from the HTC Vive were shown to possess a large amount of

jitteriness, as shown by Figures 5.5 and 5.6.

Even though the setups shown in the previous subsection were traced with the wand,

it was hard to maintain perfectly straight lines and to prevent tremors while moving. Fur-

thermore, accidental bumps would occur around the chairs leading to extra shakiness in the
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Figure 5.2: Setup 1: A 1m x 1m square was drawn. This setup was used to draw two shapes,
a square and a right triangle.

Figure 5.3: Setup 2: A 1m x 1m x 1m cube was drawn. This setup was used to draw out a
partial cube with two faces.
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Figure 5.4: Setup 3: A full cube was set up. This setup was used to draw a partial cube
with two parallel faces.

Figure 5.5: A seemingly smooth
curve

Figure 5.6: Rotating the path dis-
plays the jitteriness in the curve

curves.

There were two main issues that had to be dealt with before generating a Flail program

for the Vive paths:

1. The closeness of the acquired points. It is very inefficient to calculate displacements

that are so small. Apart from leading to a very large Flail file, it is inefficient to make

a drone fly in bursts as short as 0.0001 units.
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2. The jitteriness of the paths. I did not want to generate a program that would make

drones fly shakily.

In regards to the first issue: Unity is capable of querying objects 60 times per second [45],

resulting in points that are too close together. This is problematic as the path generation

script requires a minimum distance of about 0.0055 units between vectors. Anything smaller

than this results in an underflow, or in an output of 0. As such, points that were too close

together had to be removed.

The second issue required different smoothing methods depending on whether the given

pattern was composed out of any of the following: 3D shapes, straight lines, circular patterns,

and 2D shapes. I used three different smoothing techniques to address the aforementioned

trajectory types: projection, the Ramer–Douglas–Peucker algorithm, and the Catmull-Rom

spline.

Projection involves projecting all curve points onto a given plane. For the setup that

I used, I only projected points onto the xz, xy, or yz plane. This is easily performed by

“clearing” the respective axis. To project onto the:

• XZ plane, multiply all points by [1, 0, 1], which clears the Y coordinate.

• XY plane, multiple all points by [1, 1, 0], which clears the Z coordinate.

• YZ plane, multiply all points by [0, 1, 1], which clears the X coordinate.

I noticed that the 2D patterns that I traced tended to have fluctuations along the Y axis.

Take the square trace from setup 1 as shown in Figure 5.7. There is a noticeable amount of

noise along the y-axis. A simple way of removing these fluctuations is to project all points

onto the xz plane, effectively “flattening” the shape, as shown in Figure 5.8.

The Ramer–Douglas–Peucker (RDP) algorithm was used to decimate the curves, or to

remove points that were too close together. This algorithm, which is also known as the

iterative end-point fit algorithm, is a line simplification algorithm that finds a similar curve

60



Figure 5.7: Original trace captured
from setup 1

Figure 5.8: All curve points pro-
jected onto the xz plane

to the original, but with fewer points. It does so by imagining a line between the first and last

point of the curve, and removing any point in between that is closer than a given distance

ε [46]. A new curve is generated based off of this new list of points.

In order to select a cohesive ε, the smallest possible displacement, one characteristic from

the BAM table (as shown in Section 4.1.1) has to be maintained. The minimum value to

prevent underflows, as shown in the table, is 0.0055, meaning that displacements have to

be at least 0.0055 units apart to prevent underflows. The aforementioned staircase method

further breaks down the displacements, d, into smaller chunks by dividing it by a value, n.

As such, to prevent underflows for this method, ε has to be calculated so that its smaller

chunks will be at least 0.0055:

ε/n >= (0.0055× n)

One of the partial cubes I traced from setup 2, shown in Figure 5.9, is cleaned up with ε

= 0.1 (Figure 5.10). The RDP algorithm was effective at stabilizing the cube pattern as it

reduced the number of points in the original graph from 2502 down to 13.1

A problem arises, however, when dealing with patterns that are curved as opposed to

1The reduced number of points in the file would also affect the size of the Flail output file. I did not
report the change in file size due to the amount of underflows that would occur in the original HTC Vive
trajectory.
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Figure 5.9: Original trace captured
from setup 2

Figure 5.10: Trace after the applica-
tion of the Ramer–Douglas–Peucker
algorithm with ε = 0.1

Figure 5.11: Original segmented points

Figure 5.12: Smoothed points after the application of
Catmull-Rom

straight. The RDP algorithm, albeit useful in decimating paths, segments patterns that are

curvaceous. Such patterns require further smoothing to regain its curves. This is where the

Catmull-Rom spline comes in.

Imagine that we have a set of four points connected by straight lines, as shown in Figure

5.11, and we wanted to modify it to create a smoother path similar to Figure 5.12.

The Catmull-Rom spline is a technique that is often used in geometric design as it can
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easily interpolate control points without solving system of equations [47]. It is a type of

interpolating spline (a curve that intersects its control points) defined by a set of four control

points: P0, P1, P2, and P3, with the curve being drawn from P1 to P2 [48]. This method

approximates its points with a smooth third degree polynomial function that is piecewise

defined [49]. Two outer points are required to smooth out a desired portion, or in other

words, Pi−1 and Pi+2 are needed to calculate the spline between points Pi and Pi+1.

5.2 Adding Vive Data Functionality to the Path Gen-

eration Script

The path generation script (Section 4.3) allowed 2D curves to be drawn from parametric

functions. I modified the script to accept 3D paths and to generate 3D Flail instructions.

The script went through two main modifications: an added input parameter that accepts a

list of points as the basis for the path, and the acceptance of z coordinates.

The first change was fairly straightforward. When parametric functions are being used,

the script continuously queries the functions to fetch the next calculated point in the equa-

tion. In order to accept a list as the basis for the path generation, I added a new function

that iterates through the list and returns the next available point.

The second change required the calculation of how far a drone would have to ascend or

descend to reach the next point in the sequence. Imagine that we are currently at point A

and are trying to reach point B. There are two main methods that can be used to calculate

the displacement needed to reach point B:

Method 1 (Forward-Ascend): The drone could move forward until it is underneath point

B, and then rise up to meet the point. Method 2 (Staircase): The drone could move forward

and upwards in short increments, similar to a staircase, until the point is reached.

Both methods are illustrated by Figure 5.13.

As explained in Section 4.3, the script keeps track of three points: P0 = (x0, y0), P1 =
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Figure 5.13: Method 1: Move forward and ascend. Method 2: staircase method.

(x1, y1), and P2 = (x2, y2), where vector
−−→
P0P1 is the previously calculated movement segment

and vector
−−→
P1P2 is the current segment. To incorporate the 3rd dimension, the points have

to include the z coordinate: (x0, y0, z0), (x1, y1, z1), and (x2, y2, z2).

The amount that the drone has to move forwards by is calculated by taking the distance

between two vectors with the distance formula:

dist(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

This value will be referred to as forward displacement. The amount that the drone has

to ascend by, is calculated by taking the difference between the z coordinates of two vectors.

This value will be referred to as z displacement.

1. Method 1: To reach point B: Move forward by the calculated forwards displacement.

Ascend for the calculated z displacement.

2. Method 2: To recreate the “stair” effect shown in Figure 5.13, the forward and z

displacements have to be broken down into chunks. The size of these chunks may vary

according to how precise, or how close to a diagonal line the user might want the flight

to take. To break down the displacements, a value n has to be chosen and used to
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divide up the displacements.

Suppose the drone has to fly forwards by 10 units and upwards by 3 units. If the

chosen n is 5, then the script will output a loop composed of the following instructions:

Repeat 5 {

Forward ( 2 ) ;

Ascend ( 0 . 6 ) ;

}

As such, the Flail output will use the following format to reach point B:

Repeat n {

Forward ( fo rward d i sp lacement / n ) ;

Ascend ( z d i sp lacement / n ) ;

}

5.3 Evaluation

5.3.1 Evaluating Different Methods of Ascension

Two methods to ascend the drone were presented, dubbed the forward-ascend method and

the staircase method. Both present distinct deviations from the expected flight path. The

root mean square deviation (RMSD) was used to calculate the amount of error that each

method presented. The RMSD is commonly used to measure the difference between the

values predicted by a model and the values observed [50]. RMSD is always a positive value,

and a result of zero would imply a perfect data fit. Generally, a lower RMSD is better than

a high one. RMSD can be calculated with the following formula, where T is the number of

data points:

RMSD =

√∑T
i=1(ypredicted − yactual)2

T
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Figure 5.14: Staircase method of ascension for n =
5

Figure 5.15: Forward-Ascend method

Let’s take the following path as an example. Suppose a drone is flying from position (10,

0) to (10, 10). The drone can either ascend by flying forwards for 2 units and then ascending

for 2 units in incremental bursts, or by flying 10 units forwards and ascending for 10 units,

as shown in Figures 5.14 and 5.15.

The RMSD for both methods can be calculated by taking the difference in y values

between the predicted and actual values:
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RMSDstaircase =

√∑5
i=1 22

5
= 2

RMSDForward−Ascend =

√∑1
i=1 102

1
= 10

As the staircase method always bears smaller displacements compared to the forward-

ascend method, it can be stated that the following will always be true:

RMSDstaircase ≤ RMSDForward−Ascend

A question is posed, however. Is there a range of values where either method could be used

interchangeably? Assume that we were to fly from point A to point B, where both points

were separated by a width, w, and height, h. Is there a range of w and h values, where either

the staircase method and the forward-ascend method could be used and generate the same

RMSD?

To check, I plotted three distinct graphs that depict the RMSD for points separated by

varying widths and heights (Figures 5.16, 5.17, 5.18). Given a maximum value (max), a

surface plot is generated that includes the RMSD of every (width,height) coordinate pair

between points (0, 0) and (max, max). Different values for the staircase iteration, n, were

chosen.

As each staircase increment is consistent, meaning each individual “stair” has the same

width and height, the RMSD formula can be simplified to:

√∑T
i=1(ypredicted − yactual)2

T

=

√
n× (ypredicted − yactual)2

T

=
√

(ypredicted − yactual)2
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Figure 5.16: RMSD plot for n = 1. This corresponds to the forward-ascend method.

= (ypredicted − yactual)

Where (ypredicted − yactual) is the height of the individual “stairs”.

The height and width of each “stair” is calculated by dividing the original height and

width of the ascension points by ‘n’. As the above graphs vary from 0 to 10, the height of

each stair will vary from 0, 1/n, 2/n, . . . , 10/n. As such, it makes sense to end up with a

series of linearly increasing points.

The fourth graph (figure 5.19) displays all three previous graphs together. There isn’t

any noticeable range where both methods could be used interchangeably. However, it can

be stated that there are height values for which the RMSD is the same. This happens in the
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Figure 5.17: RMSD plot for n = 5

above scenario when the RMSD = 1.0. Which occurs when: n = 1, for height = 1; n = 5,

for height = 5, n = 10, for height = 10.

Conclusively, the methods are indistinguishable from one another when they both have

the same “stair” height.

5.4 Comparison of Curve Data

To evaluate the Flail programs generated from the Vive paths, we will examine the original

path taken from the Vive, the cleaned data points, and the simulated flight path.
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Figure 5.18: RMSD plot for n = 10

Path 1: Right Triangle Taken From Setup 1

The original path (Figure 5.20) was shown to be unstable and to not fully resemble a right

triangle. To clean up these points, the path was projected onto the XZ plane and decimated

with a chosen ε = 0.1 (Figure 5.21). These two techniques were shown to be effective, as

the cleaned up data points are noticeably closer to a triangle. As shown in Figure 5.22, the

simulated flight was capable of following the expected path.

Path 2: Partial Cube 1 Taken From Setup 2

The original Vive path was expected to be composed out of straight lines, but was shown
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Figure 5.19: Combination of all 3 surface plots

to be more curved with some outlier points (Figure 5.23). A similar procedure was used to

clean the path where RDP was applied with ε = 0.1 (Figure 5.24). The resultant path was

shown to be straighter and appeared to more closely resemble a cube (Figure 5.25).

Path 3: Partial Cube 2 Taken From Setup 3

Although the overall shape of the partial cube was understandable, the generated shapes

were still jittery (Figure 5.26). The cleaned up points were decimated with an ε = 0.1. It is

noticeable that the bottom chunks of the path were removed after the Ramer-Douglas-Peuker

algorithm was applied (Figure 5.27). This happens every so often when RDP is applied due

to the oversimplification of the curve. Nonetheless, the cleaned points presented a more

stable path for the virtual drone to follow (Figure 5.28).
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5.5 Discussion

The use of gestures is a more intuitive way of expressing complicated Flail code. Nonetheless,

positional points have to be somewhat far apart to prevent underflows. This reduces the

precision of the generated curve and might lead to some amount of distortion.

It was shown that the virtual drone was capable of following the cleaned up trajecto-

ries suitably well, even though some deformation was present. This is most likely due to

estimation errors that occured in the Polar.py script.

It can be argued that the use of different filtering algorithms reduces the intuitivity level

of this method for flight generation. Nonetheless, filtering is unavoidable. Real world data

always bears noise that has to be removed. In an ideal scenario, users would be given an

application that would allow them to manually fix the data to better suit their needs.

5.6 Summary

This chapter covered the use of gestures to control drone flight paths. The HTC Vive’s

wand controller was used to capture the performed motion. The Polar.py script (presented

in Section 4.3) was modified to accept a list of points as input and to take the z-axis in

consideration when planning paths.

After data points were acquired from the HTC Vive, they were cleaned and filtered.

Points that were too close together were removed and a low pass filter was applied to the

curve. Points had to be at least 0.0055 units apart to prevent underflows, but this resulted

in less precise curves and in some distortion. The virtual drone was shown to follow the

generated paths well but with some fluctuations. These were most likely caused due to the

estimation made when generating the curves.
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Figure 5.20: Original right triangle taken from the Vive

Figure 5.21: Cleaned up datapoints for the right triangle
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Figure 5.22: Simulated flight path based on the generated Flail program for the cleaned up
right triangle
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Figure 5.23: Original path taken from the Vive

Figure 5.24: Cleaned up data points
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Figure 5.25: Simulated flight path based on the generated Flail program of the cleaned up
cube
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Figure 5.26: Original partial cube path taken from the Vive

Figure 5.27: Cleaned up datapoints for the partial cube
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Figure 5.28: Simulated flight path based on the generated Flail program of the cleaned up
partial cube
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Chapter 6

Flail for GPS-based Drones

The last few chapters dealt with the construction of the Flail language and simulations

to test it. We have yet to consider real life applications of Flail on physical drones beyond
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the microdrones in Section 3.2.1.

This chapter will focus on answering RQ4: What changes, if any, are necessary in order

to get Flail to run on a commercial drone?

RQ4.1 How can we generate an output that is understandable to commercial drones?

There are a lot more limitations when flying a physical drone compared to a virtual

one. Obstacles and weather, for example, are issues that might affect a drone’s flight.

Furthermore, controlling drones programmatically tends to be a bit complex as it’s not

the default way of flying them.

Companies sometimes include applications that allow users to select specific waypoints,

or geo-referenced coordinates, to guide their drones.

These applications, however, tend to be brand specific and won’t work for a drone of a

different maker. To get around this, a Ground Station application was used. Ground

station is a generalized waypoint application used to coordinate the flight trajectories

of a number of different drones. Ground station applications are GPS based which

prevents drones from being flown indoors.

RQ4.2 How can we generate an output file that is platform independent?

As mentioned, Flail was developed with the goal of being platform independent, allow-

ing its output to be read by different drone models. APM Planner 2.0 was selected as

the Ground Station intermediary between Flail and the drone. The option to generate

an APM Planner readable output file was added to Flail.

This chapter will focus on the modifications needed to make the Flail translator output

an APM Planner 2.0 readable file.
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6.1 Platform Independence

One of the ideals behind Flail is to have the language be platform independent, or in other

words, require minimal to no changes in order to function with different drone models or

platforms. As Flail is a method used to describe trajectories, it doesn’t necessarily have to be

limited to drones. The output paths can be used to guide a number of different vehicles, like

RC cars, for example. The only limitation is that certain vehicles, such as the aforementioned

RC car, would be unable to perform the “ascend” and “descend” commands. This is easily

dealt with by generating paths that would be limited to the XY plane.

To make Flail compatible with different platforms, the translator had to be modified to

generate an output that is interpretable by the designated platform.

To allow a number of different drone models to be reached, an additional output file was

added to Flail. This file is readable by the selected Ground Station, an application that

communicates with aerial vehicles via the Mavlink protocol. As such, the Ground Station

is being used as an intermediary between Flail and potentially a number of different drone

models.

6.1.1 Ground Station

Ground Station is typically software that runs on a “ground-based” computer, hence its

name, that communicates with an UAV via wireless telemetry [51]. The benefits of using a

Ground Station as a control medium for aerial vehicles is that, apart from displaying real

time data, such as performance and position, it is also capable of controlling UAVs in flight.

There are a number of different Ground Station software packages available. The more

popular ones for desktop use include Mission Planner [52], APM Planner 2.0 [53], MavProxy [54],

QGroundControl [55], and UgCS – Universal Ground Control System [56]. APM Planner

2.0 (APM 2.0) was chosen, as it’s considered one of the better applications for Linux and

MacOS computers [51]. APM 2.0 is an open source application for MAVlink based autopilots.
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Figure 6.1: Display example from APM Planner 2.0

Figure 6.2: APM Planner 2.0 flight plan options as seen in Figure 6.1.

Figure 6.2 displays the available flight options:

[0]: Mission start - Is this the initial coordinate for the mission?

[1]: Waypoint order - In what order should this waypoint be executed?

[2]: Action at waypoint - What action should the drone perform when it reaches this way-

point?
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[3]: Coordinate frame - What type of altitude reference should the drone use for this way-

point?

[4]: Latitude in degrees - What is the latitude of this waypoint?

[5]: Longitude in degrees - What is the longitude of this waypoint?

[6]: Altitude in meters - What is the altitude (in meters) of this waypoint?

[7]: Yaw rotation - What is the drone’s yaw rotation at this waypoint?

[8]: Uncertainty radius in meters - What radius should the drone use to specify whether it

has reached its destination?

[9]: Time to loiter - How long should the drone wait when the waypoint is reached?

[10]: Continue automatically to next waypoint? - Should the drone move on to the next

waypoint automatically?

[11]: Waypoint radius - What is the radius of the waypoint?

[12]: Default altitude - What is the default altitude when adding new waypoints?

Waypoints can be stored and loaded from a text file. The text file maintains the following

format:

[waypoint order] [mission start] [coordinate frame] [action at waypoint] [time to loiter] [un-

certainty radius in meters] [waypoint radius] [yaw rotation] [latitude in degrees] [longitude

in degrees] [altitude] [continue automatically?]

For example, take the trajectory shown in figure 6.1. That mission file contains the fol-

lowing:

QGC WPL 110

0 1 0 16 0 5 0 0 0 0 0 1

1 0 3 16 4 2 0 5 5 0 28 1

2 0 3 16 0 7 0 0 5 5 28 0
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3 0 3 16 0 5 0 0 0 5 28 1

4 0 3 16 2 5 0 0 0 0 28 1

Consider the first line of the file:

0 1 0 16 0 5 0 0 0 0 0 1

This line can be interpreted as a waypoint with the following characteristics:

0 - [waypoint order] - first waypoint to be executed

1 - [mission start] - this is the start of the mission

0 - [coordinate frame] - absolute altitude

16 - [action at waypoint] - treat this as a regular waypoint

0 - [time to loiter] - 0 seconds

5 - [uncertainty radius] - 5 meters

0 - [waypoint radius]- 0 meters

0 - [yaw rotation] - 0 degrees

0 - [latitude] - 0 degrees

0 - [longitude] - 0 degrees

0 - [altitude] - 0 meters

1 - [continue automatically?] - Yes

The other lines can be interpreted in a similar fashion.

6.2 The Addition of APM Planner 2.0 Output to Flail

A new output file was added to Flail, allowing the translator to generate an APM Planner

2.0 mission text file. For simplicity’s sake, a few options were kept to their default values:

• Mission start: (1) for the first waypoint, (0) for all other waypoints;

• Coordinate frame: (0) for the initial waypoint so it maintains absolute altitude, (3) for
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all subsequent waypoints so they maintain relative altitude;

• Action at waypoint: (0) for all entries so that they are treated as default waypoints.

(APM Planner 2.0 automatically treats the first waypoint entry as ”Home”);

• Time to loiter: (0) seconds;

• Uncertainty radius in meters: (5) meters;

• Waypoint radius: (0) meters;

• Continue automatically to next waypoint: (1) yes.

While most options of the mission text file were kept to their default values; the drone

yaw rotation, latitude, longitude, and altitude parameters were calculated for each waypoint.

To calculate the drone rotation at each waypoint, it was necessary to keep track of the

drone’s current orientation vector and rotation matrix. The orientation vector keeps track

of the drone’s current direction, while the rotation matrix keeps track of the drone’s current

rotation. Whenever a YawLeft or YawRight instruction is executed, the rotation matrix is

updated to reflect the designated yaw rotation. The updated rotation matrix is then applied

to the orientation vector to update the drone’s current direction. Therefore, the drone’s

current yaw rotation can be calculated by taking the arctangent of the current vector as

shown by the code below:

# The curVector keeps track of the drone’s current orientation

curVector = initalVector = [1, 0, 0, 0]

# The rotMatrix keeps track of the drone’s current rotation

# It is initialized as an identity matrix

rotMatrix = identity matrix
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## rotation about the Z axis

ROT_Z = lambda z: [[cos(z), -sin(z), 0, 0],

[sin(z), cos(z), 0, 0],

[ 0, 0, 1, 0],

[ 0, 0, 0, 1]]

# Multiplies matrix1 * matrix2

def matMul(matrix1, matrix2)

# Multiplies matrix * vector

def vecMul(matrix, vector)

# Converts the given radian value into degrees

def degrees(radian)

# Rotate the drone counter-clockwise about its z-axis

def yawLeft(angle):

rotMatrix = matMul(self.rotMatrix, ROT_Z(radians(BAM2float(ang))))

curVector = vecMul(self.rotMatrix,self.initialVector)

# Rotate the drone clockwise about its z-axis

def yawRight(angle):

rotMatrix = matMul(self.rotMatrix, ROT_Z(radians(BAM2float(-ang))))

curVector = vecMul(self.rotMatrix,self.initialVector)

# Calculate the drone’s current heading in the range [0,2pi).
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def heading():

return degrees(atan2(-curVector[1], -curVector[0]) + pi)

The drone’s current altitude is calculated by updating an altitude parameter. This

parameter is initialized to 0 and updated whenever an ascend or descend instruction is

executed.

# The drone’s current altitude

altitude = 0

# Ascend the drone by the given distance

def ascend(distance):

altitude += distance

# Descend the drone by the given distance

def descend(distance):

altitude -= distance

if altitude < 0

altitude = 0

To calculate the latitude and longitude coordinates, the movement instruction calls 1

had to be converted into x,y coordinates. To do so, the drone’s current location had to be

updated every movement function call:

# Initialize the drone’s position to be at the origin of the

1Forward, Backward, Left, and Right instructions
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# coordinate system

# This variable keeps track of the drone’s current position

curPoint = [0, 0, 0, 0]

# The curVector keeps track of the drone’s current orientation

curVector = initialVector = [1, 0, 0, 0]

# Scales the vector by the given ’distance’ amount

# Returns vector * distance

def vecScale(vector, distance)

# Returns vector1 + vector2

def vecAdd(vector1, vector2)

# Given a (float) distance value, ’dist’:

def updateCurrentPosition(dist):

scaledVector = vecScale (curVector, dist)

curPoint = vecAdd(curPoint, scaledVector)

latitude = curPoint[1]

longitude = curPoint[0]

Every calculated value is then stored in a file called gps.txt that follows the format

described in the previous section.
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6.3 Evaluation

For reasons discussed later, the evaluation for this chapter will be performed by analyzing

how closely APM Planner 2.0 was able to recreate the given trajectories.

6.3.1 Ground Station Waypoint Generation

As shown previously, APM Planner 2.0 is able to visually display the expected drone route

by marking the given waypoints onto a map (Figure 6.1).

One thing that had to be taken in consideration, however, is that latitude coordinates

range from (90◦N ↔ 90◦S) (0◦ at the equator) and longitude coordinates range from

(180◦E ↔ 180◦W ) (0◦ at the Greenwich meridian).

Therefore, the Cartesian coordinates have to be mapped to a rectangle with lower left

corner at (-180, -90) and upper right corner at (180, 90). This is accomplished by an affine

transformation. Besides, if we want to preserve angles, the applied scale has to be the same

in x and y.

Cartesian coordinates do not convert directly into GPS coordinates, as the curvature of

the Earth has to be taken in consideration. One can think of these as the parameters (θ, φ)

in spherical coordinates and that a curve on the plane can be mapped onto the sphere in a

similar way as texture mapping is applied in Computer Graphics.

Three tests were performed to analyse how closely this Ground Station would be able to

re-create routes generated from the path generation script (given in Section 4.3) and Flail

programs.

The first test involved a simple Flail program that directed a drone to fly in a square-like

pattern:

# Drone is expected to be at the origin facing the positive x-axis

Forward(5);
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Rotate(90);

Forward(5);

Ascend(20);

Rotate(90);

Forward(5);

Rotate(90);

Forward(5);

# Drone is now back at the origin

An APM Planner 2.0 output file was generated following the methods explained in Section

6.2. The resultant route is shown in Figure 6.5. The waypoint properties matched the

expected values and the route is shown to accurately mark waypoints at GPS coordinates:

(0, 0) → (5, 0) → (5, 5) → (0, 5) → (0, 0).

The second test used the path generation script to create a flight route that followed the

“amoeba” polar function, as shown in Figure 6.6.

Finally, the third test used the path generation script to create a flight route that dis-

played the five petal rose polar function, as shown in Figure 6.7.

It is noticeable that the generated routes are very large, which is not desirable as drones

are incapable of flying such routes in one go due to hardware limitations. Furthermore, it

might be of interest to control where the drone passes through. For example, generating

a route that passes through three distinct latitude and longitude coordinates, which will

also affect the scale of the path. This can be done by using a 2D affine transformation to

map three points of the original curve (frame A) onto the GPS coordinates of three distinct

latitude/longitude pairs (frame B).
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Let three points taken from the original curve be referred to as triangle RPQ. To acquire

the first transformation matrix, convert this triangle to a vector format as shown by the

homogeneous transformation matrix below:


Px −Rx Qx −Rx Rx

Py −Ry Qy −Ry Ry

0 0 1


The mapping from triangle RPQ in frame A onto triangle R’P’Q’ in frame B is given by

the matrix:

TA→B = T−1 ∗


P ′x −R′x Q′x −R′x R′x

P ′y −R′y Q′y −R′y R′y

0 0 1


Apply transformation, T, to each point in the original curve to generate a transformed

curve as shown in Figure 6.3. To further demonstrate this technique, the five petal rose

depicted in Figure 6.7 underwent an applied transformation to constrain it to a few blocks

within Calgary, as shown in Figure 6.4. To generate this curve, three latitude and longitude

coordinates within Calgary were selected: [-114.070846, 51.048615, -114.071485, 51.049512,

-114.070004, 51.049525] and three parameterized values were selected from the original curve:

[0, π/3, 2π/3]. As the five petal rose is a polar function, the corresponding x/y values can

be easily extracted from the selected values. These two frames, the latitude and longitude

list and the coordinates from the original curve, can then be used to create a transformation

matrix that can be applied to each point in the five petal rose.

6.3.2 Real World

The IRIS drone was used to test the Ground Station connection. Due to time constraints

and safety concerns, I was unable to perform an outdoor flight test and only tested the
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Figure 6.3: This parabola maps to Rio de Janeiro, New York, and Calgary. This route
is used for illustrative purposes and is not assumed to be a suitable route for commercial
drones due to battery limitations. If a smaller scale was desired, one could use latitude and
longitude pairs that were closser to one another.

Ground Station indoors. Therefore, the drone was unable to fly due to GPS being unusable

within buildings. Nonetheless, this section will cover how to establish a connection between

an Ardupilot compatible drone (such as IRIS) and APM Planner 2.0.

The drone must have a radio antenna in order to communicate with the Ground Station

(the IRIS drone used a 3DR 915 MHz antenna). To connect the drone to the Ground Station

requires the following [57]:

1. Connect the antenna receiver to a computer;

2. Power the radio attached to the drone by plugging in its battery;

3. Open the Mission Planner and go to the Initial Setup — Optional Hardware — SiK

Radio page;

4. Select the correct COM port and set the baud rate to 57600 (Baud rates may vary

depending on the used radio).
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Figure 6.4: Mapping of the five-petal rose within Calgary. This route used three latitude
and longitude pairs within Calgary to create a scaled down version of the original curve.
Note that distortions may occur.

If the connection is successful, then the “Flight Plan” page in APM Planner 2.0 will

show a pulsating “heartbeat”. The drone’s in flight data can be found under the “Graphs”

page. This includes all movement functions, such as drone rotations, performed since its

connection as shown in Figure 6.8. Finally, the “Flight Data” page will display information

regarding the drone’s current flight data (e.g., current altitude, current position, etc...).

As mentioned, the drone was kept indoors and therefore no satellite connections were

established, (Figure 6.9) preventing drone lift-off.

6.4 Summary

This chapter covered the use of a Ground Station to facilitate the use of Flail in different

drones. APM Planner 2.0 was selected as the chosen Ground Station. A new output file
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Figure 6.5: Resultant drone route generated from a Flail program that directs a drone to
fly in a square-like pattern. Note that there is an ”extra” waypoint as the first entry. This
denotes the starting position of the drone at the origin (0, 0).

type was added to Flail, to allow its outputs to be interpreted by the Ground Station.

An outdoor flight test was not performed due to time constraints and safety reasons.

This chapter’s evaluation was performed by checking the waypoint generations displayed in

APM Planner 2.0. The waypoints were accurately translated between Flail and the Ground

Station.

94



Figure 6.6: Re-creation of the amoeba polar function inset as a series of waypoints

95



Figure 6.7: Re-creation of the five petal rose polar function inset as a series of waypoints
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Figure 6.8: APM Planner 2.0 records drone features during flight. This graph demonstrates
the drone’s roll rotation. This was generated by picking up the drone and rolling it manually.
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Figure 6.9: No satellites can be found indoors
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Chapter 7

Reflection, Future Work, and

Conclusion

7.1 Research Questions

Flail was proposed as a language to programmatically define flight paths for drones. Four

distinct research questions were addressed in the previous chapters.

RQ1 - How should we design a time-based programming language that allows us to describe

movement paths for drones?

RQ1.1 - How do we describe drone movements as instructions?

In this version, Flail used time based functions to control drone trajectories.

Movements were given as (instruction, parameter) pairs, where the instruction

was one of the ten available Flail commands (as shown in Chapter 3), and the

parameter was either an intensity value (if using a movement instruction) or a

duration value (if using a wait instruction).

An intensity value controls how fast the drone should move and was given as a

value between 0.0 (no speed) and 1.0 (maximum speed). A duration value was

given as an integer and was used to control the duration of the wait function. The
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benefit of the time-based version of Flail is that multiple instructions could be

set at once. If a forward command was called along with a move right command,

then the drone would be set to fly in a diagonal path until the instructions were

unset, giving users a decent amount of flexibility on how to direct their drones.

RQ1.2 - What time based functions do we need?

Instructions were separated by wait functions. These were split into two cate-

gories: wait for a certain amount of seconds (wait) and wait for a certain amount

of milliseconds (waitMilli). Wait instructions were used to control how long the

previously set instructions would run for.

RQ2 : How do we create a distance based DSL capable of interacting with drones?

RQ2.1 - How can we specify distance in Flail and what kind of distance functions would

we need?

In this version, Flail used distance based functions to control drone trajectories. A

new distance mode was added, which, when activated, made Flail accept floating

points as parameters and to treat each parameter as a distance to be traversed.

SetMode ( d i s t anc e ) ; # F l a i l now expect s d i s t anc e parameters

Forward ( 5 . 5 ) ; # Move forward f o r 5 . 5 un i t s

Le f t ( 2 . 0 ) ; # Move to the l e f t f o r 2 un i t s

RQ2.2 - How can we specify the scale of the trajectory?

The chosen scale will control the dimensions of the generated path, or in other

words, how large the path will be. Different scalings will lead to different unit sizes.

To help users control the dimensions of their trajectories, the path generation

script (presented in Chapter 4) allows users to select the size of the used scale.

If users are manually creating their Flail code, then they’d be responsible for

selecting their own scale system.
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RQ2.3 - How can we specify repeated movements?

A looping function was added to Flail to allow instructions to be repeated. This

simple loop uses the following structure:

Repeat n {

I n s t r u c t i o n s

}

Where the instructions between the braces will be repeated n times.

RQ3 - How can we use gestures to simplify the generation of Flail code?

Even though it is straightforward to use Flail to create simple flight paths, it becomes

progressively harder when working with more complex trajectories. Flail requires users

to manually calculate the drone’s translations and rotations, as such, complicated

trajectories will require more calculations than a simple one, which is tiring for users.

To make the path generation process a bit less painful, the HTC Vive was used to

allow users to use gestures to describe their desired paths. A user could move the Vive

wand around and use its stored X,Y,Z coordinates to generate a Flail file.

RQ4 - What changes, if any, are necessary in order to get Flail to run on a commercial

drone?

RQ4.1 - How can we generate an output that is understandable to commercial drones?

Ground Station was used as an intermediary between Flail and the drone. Ground

Station communicates with UAVs via wireless telemetry and can specify routes

through waypoints, or map markers that pinpoint locations the drone should fly

to. One limiting factor, however, is that Ground Station is GPS based and as

such forces drones to be flown outdoors, as GPS can not be captured indoors.

RQ4.2 - How can we generate an output that is platform independent?
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Platform independence refers to an application that requires minimal to no changes

to allow it to function in a different system or domain. The difficulty for Flail

to achieve platform independence is that every drone has its own firmware, and

each require a number of modifications in order to get Flail to run on it. To get

around this, Ground Station was used as an intermediary. Flight paths can be

defined as “waypoints” or markers on a map that denote where a drone should

fly to.

7.2 Reflection

7.2.1 Language Design

Flail has two ways to describe flight patterns: a time-based version and distance-based

version. Each version has its own advantages and disadvantages.

As shown in Chapter 2, a number of different languages follow a similar time-based

approach to flight control as the one used in Flail (Node AR, Tynker’s drone app). It is fairly

intuitive to use time as a way to describe motion, however, it is limiting in its description of

complex paths. It isn’t easy to predict how far a drone will fly when using such a technique,

limiting its use in more intricate scenarios. On the other hand, this approach allows multiple

instructions to be set at once, giving users a bit more control over directional changes in the

drone’s flight path.

To overcome the lack of distance precision that occurs in the time-based version of Flail,

a distance mode was added. In this mode, motion is described by distance, or by how

far a drone will fly before changing directions. While this version adds precision to flight

trajectories, it becomes cumbersome to use in more complex routes as users have to manually

measure out each directional change.

As such, users have to decide which version of Flail will better suit their needs. If they

require more control over the direction of the drone’s flight then they should use the time-
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based version. However, if they require more precision in their flight paths, then they should

use the distance-based version. This version also has the added benefit of working alongside

the path generation script, which further facilitates the user’s route planning.

7.2.2 Issues When Developing Flail

One issue that I did not consider for a while was the size of the Flail output files. Initially,

outputs were generated based on the literal interpretation of (instruction, parameter) pairs.

As Flail only outputs bytes, parameter values were limited to 25510. If a parameter was

larger than 25610, it would be broken down into chunks of 25610 and each chunk would be

passed in with an instruction byte. For example, Forward (800) would be translated to:

0x8, 0xFF, 0x8, 0xFF, 0x8, 0xFF, 0x8, 0x20

Which effectively quadrupled that lone forward instruction. The larger the parameter, the

larger the output. Flail files got progressively larger and larger, and soon became unusable.

The issue was fixed after I added the repeatNextInstFor command, which truncated du-

plicated instructions to 6 bytes by following the format shown below:

[repeatNextInstFor] [Number of repetitions] [instruction] [256] [Instruction] [Remainder]

Forward(800) for example, would be translated to:

0xC, 0x3, 0x8, 0xFF, 0x8, 0x20

This change was beneficial when binary angle measurements (Chapter 4) were used to

convert floating point numbers into integers, as the conversions usually led to large integer

values.
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7.3 Future Work

Flail still requires some work in order to become a fully-fledged method for trajectory plan-

ning. These involve safety concerns and further development.

7.3.1 Exception Mechanism

There is one safety concern that has yet to be addressed: Flail is currently incapable of

performing collision detection, and flies drones blindly. There is a large chance that a drone

will crash if it is flown in a space with a lot of physical constraints, e.g., indoors.

An exception mechanism would have to be put in place which would allow drones to

detect “exceptions” in its path and recalculate its route. Anything that would knock the

drone off its intended path would be treated as an exception.

Imagine that a drone intended to fly in a square-like pattern but had a tree in its way.

The drone would have to stop before crashing, divert away from the tree, and continue its

intended path as shown in Figure 7.1.

7.3.2 Curve Editor Application

Chapter 5 presented the use of gestures as a more intuitive approach to path generation.

That chapter, however, also demonstrated that each generated trajectory displayed a lot of

noise, which made the paths unusable in their original state. The trajectories would have to

be filtered and smoothed out before a drone could attempt to fly it. The cleaning procedure

used to do so employed a set of filtering and smoothing algorithms to clean the paths. The

addition of these algorithms reduced the level of intuitiveness of the proposed method, as

users now had to be familiar with the smoothing algorithms before they were able to generate

Flail code.

To ease the users into the process, an external application for curve editing is proposed.

This application would allow users to edit paths and to apply whatever filtering algorithm
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Figure 7.1: Possible path recalculation to prevent the drone from hitting the obstacle in its
path

they deemed necessary. This application would have to be able to do the following:

1. Present a number of different smoothing and filtering algorithms for a user to choose

from.

2. Allow users to manually move path points to different positions, i.e. allow users to edit

the generated trajectory.

3. Display previews of the user’s modified paths.

4. Generate Flail code based off of the modified trajectory.

This application would facilitate the path cleaning procedure, while also allowing users

to further modify the trajectories as they desired, giving them more freedom to design their

routes.
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7.3.3 Further Development and Tests

To increase Flail’s ability to interact with drones, it would have to be further developed

to access all drone capabilities, which would include sensor data and video support. One

possibility is to use Flail to describe sensor-centric paths, or paths that are defined by sensor

functionality. For example, a route that is generated to maintain the camera facing an object.

One limitation with updating Flail to encompass drone sensors, however, is that not all

drones have access to the same functionalities. As such, Flail would have to consider which

drone model it is interacting with, before attempting to access specific controls.

Another Flail expansion that would be of interest is to implement “on trigger events”,

or conditional statements. Tynker’s Parrot Drone app (shown in Chapter 2) is capable of

performing certain actions when specific events are triggered. For example, making the drone

lift off as soon at it touches the floor.

Conditional statements would give users more control over drone actions when it reaches

specific parts of its flight trajectory. This would be especially useful if Flail had access to

the drone’s sensors, as users could then control different sensors at distinct times during the

drone’s flight.

Finally, Flail would require flight tests to examine how well drone hardware is capable of

following the described paths. There are a number of things that could affect how accurately

a drone was able to follow the given trajectory, including: weather conditions, how stable

the drone actually is during its flight, the conditions of its thrusters, and so on.

Flight studies would help to analyse the possible limitations of the hardware when at-

tempting to follow precise directions. This would also help users to further understand the

limitations of using Flail to describe pinpoint distances.
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7.4 Conclusion

There are six main contributions in this thesis. The first is the implementation of a DSL

which offers an abstraction of the default drone controller functions into a set of commands.

The second, the implementation of a simulator using the Unity graphics engine, to test

flight trajectories without requiring an expensive real drone. The third, the presentation of

technical details on how to modify the hardware of a Cobra RC drone controller to accept

communication from an Arduino board. The fourth, the implementation of a path generator

based on parametric curves, by using the paradigm of first person piloting. The fifth, the

interactive creation of paths in a laboratory using the Vive hardware. And finally, a test of

Flail’s portability by allowing Flail to run on a Ground Station.

Chapters 3 and 4 described in detail the implementation of Flail as well as the evaluation

process used to test the language. It was shown that, although the simulator was capable of

correctly interpreting the Flail file given to it, the RC Cobra microdrone had trouble flying

stably. The difficulty of the later stemmed from the drone itself, as it possessed weak engines

and a delicate frame, which prevented it from partaking in continuous flights.

Chapter 5 demonstrated the use of an interactive interface to create flight paths. The

Vive wand was used as the gesture medium and allowed users to describe paths that could

later be converted into Flail code. The simulator was shown to accurately interpret and

execute the instructions given to it based off of the Vive generated path.

Finally, chapter 6 presented the addition of an APM Planner 2.0 output file type to Flail.

Which allowed the language to create flight trajectories that could be flown via the Ground

Station. Flail was shown to be accurately converted into a readable output, however, it

presented some scaling issues as the routes were generally to large for a commercial to fly.

This was solved by the application of a 2D affine transformation which allows users to control

the scale of the routes, as well as where the generated route would pass through.

Flail is an alternate way to design path trajectories for vehicles. While this research

emphasized path generation for drones, Flail could also be used as a way to create paths for
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vehicles in general. Since Flail can describe motion in both 2D and 3D, it is capable of being

used by any vehicle capable of movement in such dimensions. The Flail translator could be

modified to output files for RC cars, for example.

Nonetheless, Flail still requires more work in order to become a fully fledged method for

trajectory design. This includes collision detection to prevent crashes, the development of a

curve editor application in order to help users to better plan their trajectories, and of course,

better flight/movement tests to analyze how well hardware can replicate the proposed paths.
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