
I M P L E M E N T I N G A H U M A N O I D T E L E - R O B O T I C P R O T O T Y P E
F O R I N V E S T I G AT I N G I S S U E S I N R E M O T E C O L L A B O R AT I O N

martin feick

Bachelor’s Thesis

Applied Computer Science
Faculty of engineering

University of Applied Sciences, Saarland
Hochschule für Technik und Wirtschaft des Saarlandes

Submitted: 28th September 2017

Martin Feick: Implementing a Humanoid Tele-Robotic Prototype for Inves-

tigating Issues in Remote Collaboration , © April 2017 - September 2017

supervisors:

Prof. Dr. Anthony Tang

Prof. Dr. André Miede

location:

University of Calgary, Alberta (Canada)

time frame:

April 2017 - September 2017

A B S T R A C T

We designed and developed a novel system, ReMa (Remote Manipu-

lator), for supporting remote collaboration on physical tasks through

a physical telepresence humanoid robot. The system captures and re-

produces object manipulations on a proxy object at a remote location.

The prototype combines latest robotics and motion capture tech-

nologies, exploring their capabilities and limitations. We found that

directly mapping human and robot action is problematic due to the

arrangement and limits of the robot joints.

We applied ReMa to investigate how limited perspective in cur-

rent video-mediated systems affects remote collaboration. We also

explored the impact of a physical proxy manipulated by a remote

person. We conducted two user studies and contrasted the results

with recent research systems designed for remote collaboration.

Our main findings are: (1) a shared perspective is more effective

and preferred compared to the opposing perspective offered by con-

ventional video chat systems, and (2) the physical proxy and video

chat complement one another in a combined system: people used the

physical proxy to understand objects, and used video chat to perform

gestures and confirm remote actions. These research findings validate

both the design and implementation of ReMa as an effective research

platform.

iii

P U B L I C AT I O N S

Some materials, ideas and figures from this thesis also appear in the

following publications:

Martin Feick, Terrance Mok, Anthony Mok, Lora Oehlberg, and

Ehud Sharlin. (2018). Perspective on and Re-Orientation of Physical

Proxies in Object-Focused Remote Collaboration. In CHI 2018: Pro-

ceedings of the 2018 SIGCHI Conference on Human Factors in Computing

Systems. ACM. Montréal, Canada

Martin Feick, Lora Oehlberg, Anthony Tang, André Miede, and

Ehud Sharlin. (2018). The Way You Move: The Effect of a Robot Sur-

rogate Movement in Remote Collaboration. HRI ’18: Proceedings of the

Companion of the ACM/IEEE International Conference on Human-Robot

Interaction. Chicago, USA

v

The separation of talent and skill is one of the greatest mis-

understood concepts for people who are trying to excel,

who have dreams, who want to do things.

Talent you have naturally. Skill is only developed by hours

and hours and hours of beating on your craft.

Will Smith

A C K N O W L E D G M E N T S

This thesis was written at the University of Calgary in Canada, which

would not have been possible without the support of many people.

Therefore, it is my pleasure to thank Professor Anthony Tang and

Professor André Miede who made this incredible experience possible.

I am grateful for their continuing support during my thesis. I also owe

my deepest gratitude to Professor Lora Oehlberg and Professor Ehud

Sharlin for their intellectual support and their time.

It was an honor for me to be a part of the interaction Lab (iLab)

with all its amazing people. Working with all you made it a unique

experience, which I will never forget. I would like to thank Sowmya

Somanath for helping me get to know the University of Calgary. A

special thanks to Kevin Ta and Terrance Mok for their great ideas

and their help with both studies, and all iLabbers who voluntarily

participated in my pilot studies.

I wish to thank Thomas Quitter and Betina Lang for helping me

with the preparation for my stay in Canada.

Another big thanks goes to Dean Hergenhein and Chewie for being

such great roommates, giving me an introduction to the Canadian

lifestyle and becoming good friends. Furthermore, I would like to

thank Karthik Mahadevan, Jessi Stark and Markus Tessmann for the

awesome time we had.

At my home institute, I would very much like to thank Nico Kleer

and Marek Kohn for sharing the same enthusiasm on solving and

discussing problems. We always had a lot of fun, even during the

exam preparations.

Finally, I would like to thank my whole family. Without their sup-

port this stay would not have been possible.

vii

C O N T E N T S

1 introduction 1

1.1 Motivation & Research Question 2

1.2 Thesis Objectives 3

1.3 Overview 4

2 foundations 5

2.1 Mathematical fundamentals 5

2.2 ROS – Robot Operation System 7

2.2.1 Filesystem 8

2.2.2 Computation Graph 10

2.2.3 Robot Model 12

2.2.4 Tf - Transform 13

2.3 Inverse kinematics 16

2.4 Baxter research robot 18

2.5 OptiTrack 20

3 related work 23

3.1 Challenges of Object-Focused Collaboration 23

3.2 Gestures, Perspective and Orientation in Remote Col-

laboration 24

3.3 Telepresence Robots 25

4 system design 27

5 technologies 31

5.1 Tracking & Calibration 31

5.2 Baxter setup 37

6 implementation 39

6.1 Architecture 39

6.2 Server 42

6.3 Tracking Client 45

6.4 Inverse Kinematics & Collision Avoidance 46

6.5 Inverse Kinematics package 49

6.6 Synchronization 50

6.7 Modifications for User Studies 52

6.8 Summary 54

7 system evaluation 57

7.1 Accuracy & Usability 57

7.2 Limitations 59

8 user studies 63

ix

x contents

8.1 Design study 1 - The Impact of Perspective 63

8.2 Results & Findings study 1 67

8.3 Design study 2 - Role of Physical Proxy 72

8.4 Results & Findings study 2 74

9 discussion & future work 79

10 conclusion 83

a appendix 85

a.1 Mathematical 85

a.2 Tracking settings 87

a.3 Study materials 88

bibliography 95

L I S T O F F I G U R E S

Figure 1 Quaternions 6

Figure 2 ROS Service 9

Figure 3 ROS Master communication 11

Figure 4 Publisher - Subscriber design pattern 11

Figure 5 Robot Transforms visualized in Rviz 14

Figure 6 Baxter Frame tree example using Rviz 15

Figure 7 Inverse kinematics problem 17

Figure 8 Baxter robot 18

Figure 9 Baxter robot arm 19

Figure 10 OptiTrack cameras 20

Figure 11 ReMa: Remote Manipulator 27

Figure 12 Perspectives: Opposing vs. Shared 28

Figure 13 OptiTrack architecture with all components 32

Figure 14 OptiTrack setup 33

Figure 15 Calibration wand 34

Figure 16 Wanding process camera preview 35

Figure 17 Object tracking 36

Figure 18 Baxter setup components 37

Figure 19 High level system architecture 39

Figure 20 Technical system architecture 41

Figure 21 Communication flow 53

Figure 22 Robot trajectory issues 58

Figure 23 Re-adjust robot arm chain 60

Figure 24 Robot end-effector positions 61

Figure 25 ReMa study setup 63

Figure 26 Study 1: VC study setup 64

Figure 27 Study 1: Compared different perspectives 64

Figure 28 Study 1 objects: Trophy and Bird house 65

Figure 29 Vignette 1 group 3 68

Figure 30 Vignette 2 group 3 69

Figure 31 Study 2: Compared Shared conditions 72

Figure 32 Proportion of time ReMa vs. video chat 74

Figure 33 Study 2: VC+ReMa pointing gesture 75

Figure 34 Study 2: VC+ReMa spatial gesture 76

Figure 35 Gimbal lock problem 87

xi

L I S T O F TA B L E S

Table 1 Range of motion - Baxter joints 20

Table 2 Performance improvement with TRAC-IK 49

Table 3 Study 1: Task completion times 67

Table 4 Quaternion multiplication 86

L I S T I N G S

Listing 1 Baxter URDF Model 12

Listing 2 Relation between two frames 15

Listing 3 Calling IK service 44

Listing 4 Core program IK solver 51

xii

1
I N T R O D U C T I O N

We are living in a global connected world, where people from dif-

ferent continents work together to solve problems. Often, these prob-

lems involve physical objects where collaborators touch, work and

talk about these objects in relation to their environment. Physical ob-

jects play an important role in the world. People’s experiences are

based on repeated interaction with various objects, in response to per-

formance success and errors [31]. Leveraging their past experience,

people are capable of manipulating even unknown objects without

having knowledge about their properties and behaviors [52]. How-

ever, when people collaborate on physical tasks involving objects it

affects their communication. For instance, Kruger et. al. [33] define

three distinct roles for how people use object orientation in collabora-

tion: to understand, to coordinate and to communicate actions with

one another.

Moreover, when collaboration becomes remote, i.e. one person is

physically separated from the other, these conversations are more Introducing a

common issue in

remote collaboration
challenging because spatial references and gestures that are clear

when co-present are difficult to interpret. Human-Computer Interac-

tion (HCI) researchers have focused on these challenges and recent

research in that field has demonstrated that video can indeed help

remote collaboration [10, 14, 15, 19, 34]; however, effectively position-

ing the video and controlling the object present new challenges for

collaborators in trying to establish a joint, effective understanding of

what is happening [25, 38, 50].

Other researchers try to address these issues with virtual and aug-

mented reality [2, 5], but it is difficult to create unique detailed mod-

els from objects, because they are often too complex [15, 42]. Once

we use generalized models we lose the unique properties and be-

haviours of objects. We believe that physicality of objects is important

[36], and since robots are now more present in everyday life [32] we

wanted to explore how we can use them to support remote collab-

oration on physical object-related tasks. Moreover, humanoid robot

research such as Boston Dynamics1 with their Atlas robot, continu-

ously try to adapt human behaviours and capabilities to robots. This

could lead the way to the vision of using robots as surrogates for hu-

mans. To investigate the opportunities of this vision, we focused on a

smaller-scale problem that we can explore with current technologies.

1 www.bostondynamics.com

1

2 introduction

1.1 motivation & research question

In this thesis, we are specifically interested in how robots can sup-

port object-focused remote collaboration. Particularly, we are inter-

ested in real world scenarios where both collaborators have a copy

or a proxy of the object in question. This type of situation may oc-

cur, for instance, in a remote assistance situation (e.g. [45], where one

collaborator is asking for help in repairing a physical object), or in a

remote critique scenario (e.g. [42], where collaborators are discussing

and iterating on the design of a physical object) or in very simple

scenarios where collaborators may seek to understand how an object

works [7, 25]. Object-focused collaboration, particularly when both

collaborators have independent objects, presents challenges for con-

ventional remote collaboration technologies such as video chats. First,

objects can be viewed from many different perspectives by either col-

laborator, at any time. Second, the objects themselves are tangible,

exist in the physical world, and have details that are difficult to cap-

ture or convey via a virtual representation as mentioned before [15,

42]. In the face of these challenges, conventional two-way video chats

demand considerable "meta" discussion by collaborators to establish

joint understanding or common ground [8] during collaborative ac-

tivity (e.g. how to orient, view or manipulate the object). Our interestOur research

question in

Human-Computer

Interaction

is in understanding how varying collaborators’ perspectives on an ob-

ject (e.g. shared vs. opposing) helps or hinders collaboration. Further,

if we can automatically reorient a physical object or a proxy with the

help of a robot, how does this help collaborative activity?

Additionally, we wanted to explore the capabilities and limitations

of a current state-of-the-art humanoid robot that supports the above

elucidated issues in remote collaboration on physical object-related

tasks. Previous technical projects with telepresence robots directly

map human actions such as hand movements or gesture to a robotic

end-effector [37, 40, 41], but there are still many issues due to the dif-

ferent kinematic and speed capabilities. Rakita et. al. [51] showed in

their work that relaxing the direct mapping between a human hand

and robot end-effector can lead to better results. Our goal is to sup-

port remote collaboration on physical object-related tasks and there-

fore we wanted to investigate alternative ways to use telepresence

humanoid robots.

This thesis covers both, a technical and theoretical research ques-

tion, as we just discussed. It provides an alternative approach for

manipulating a remote workspace i.e. manipulating an object via a

telepresence robot, and answers the question how does a robot object

manipulator impact remote collaboration on object-related physical tasks?

1.2 thesis objectives 3

1.2 thesis objectives

To determine how we can support remote collaboration on physical

object-related tasks, we first examine the existing literature on collo-

cated collaboration as well as literature on remote collaboration on

physical tasks with a focus on objects. From this, we designed and Explaining our

workflowimplemented the novel system ReMa which allowed us to explore

how perspective and orientation is used in remote collaboration on

physical object-related tasks. Furthermore, we explored the impact of

a physical proxy manipulated by a remote person and how people

make use of the system.

During the implementation, we were faced with current challenges

in robotics that we needed to explore. To understand the current lim-

itations of a Baxter robot, we performed a technical analysis of the

robot. Following the results of this analysis we developed the ReMa

system. We conducted two studies helping us understand how per-

spective and orientation is used in remote collaboration with 3D phys-

ical objects. With the analyzed and evaluated results, we were able

to suggest design implications for future systems. Furthermore, we

discuss limitations of both our system and our two studies, and how

future work can address open questions. Moreover, we provide a tech-

nical Robot Operation System (ROS) package of our system making

it accessible for future researcher.

In this thesis we make five contributions:

1. A standard ROS package for the Baxter community using an

alternative Inverse Kinematics algorithm which works with a

physical Baxter robot, as well as in the simulation.

2. A technical evaluation of the research robot Baxter and Inverse

Kinematics in relation to (3) and (4). Contributions of this

thesis

3. A summary of past work on the role of perspective and orienta-

tion for remote object-focused collaboration

4. The design and implementation of a novel system (ReMa) that

physically communicates perspective and orientation to a re-

mote site

5. Two user studies that explore how perspective and orientation

is used in remote collaboration with 3D physical objects

We distinguish between technical and HCI contributions and, be-

cause this thesis covers both, it is structured as shown in the next

section.

4 introduction

1.3 overview

This work is divided into ten chapters which are structured as fol-

lowed:

Chapter 2 provides the requisite technical background specific to

the implementation and technical evaluation of the system. It intro-

duces the mathematical concept of quaternions, and provides a more

detailed view into the ROS, as well as basics about our core problem,

Inverse Kinematics. Furthermore, it introduces basic knowledge of

the Baxter research robot and the OptiTrack system.

Chapter 3 directly addresses contribution (3) to provide a detailed

view into the related work on supporting remote collaboration on

physical object-related tasks. It points out why we decided to design

our system for investigating the difficulties in remote object-focused

collaboration.

Chapter 4 directly addresses contribution (4): Based on the previ-

ous chapter, we explain the design of the novel system ReMa.

Chapter 5 focuses on the detailed setup of our system. This chap-

ter provides information about system components, and the specific

configurations we chose for our final implementation.

Chapter 6 addresses contribution (1) and (2). We show our imple-

mentation of the ROS package. Moreover, we discuss the Inverse Kine-

matics experiment and its results.

Chapter 7 addresses contribution (2) by providing an evaluation of

the Baxter robot in relation to our project. Furthermore, it also high-

lights general issues and limitations of the whole system we designed

and developed.

Chapter 8 addresses contribution (5). We conducted two user stud-

ies to understand the impact of perspective. We discuss the design

of each study, providing background information of participants as

well as data analysis/collection. Finally, we also elucidate the findings

from our two user studies.

Chapter 9 also addresses contribution (5) and contrasts our find-

ings with recent research findings. Moreover, we also discuss the lim-

itations of our system as well as how future work can address the

limitations and open questions. Finally, we provide design implica-

tions for future systems.

Chapter 10 summarizes the thesis.

2
F O U N D AT I O N S

In this chapter we provide the mathematical and technical background

for our project. We start with introducing four-dimensional numbers

called quaternions needed to describe the orientation of objects. Next,

we give a brief introduction to our core problem, Inverse Kinematics

(IK). Finally, we provide foundations about the Robot Operation Sys-

tem (ROS), the Baxter robot and the tracking system OptiTrack we

used, in relation to our project.

2.1 mathematical fundamentals

In this section we briefly introduce four-dimensional numbers, Quater-

nions H, and we show their advantages for our project. Quaternions

are a new type of numbers beyond the real numbers R and even

beyond complex numbers C. Nowadays, quaternions are used to de-

scribe orientation (e.g. of air planes, space shuttles, smartphones, etc.).

In our project, quaternions describe an orientation of a rigid body or

robot frames (see Section 2.2.4), in relation to the original coordinate

system. First, we give a brief throwback about how we can travel to Introduction to

quaternionsa specific point in a coordinate system in different dimensions. If we

have a one dimensional coordinate system, we can move a point to

the right with positive numbers, and to the left with negative num-

bers ∈ R, depending on the axis representation. Numbers in R are

one-dimensional numbers that allow use of very basic movements

along a fixed axis.

Let us suppose we want to move a point in two dimensions. We

can achieve this with two dimensional-numbers called complex num-

bers C. With complex numbers we are able to travel to a location in

our coordinate system by adding numbers, and furthermore we are

can rotate in two dimensions by multiplying these numbers. Complex

numbers have the form a+ bi, where a,b ∈ R and i is the imaginary

part. The multiplication of a complex number by i results in a 90

degree counterclockwise rotation of a point around the origin of the

coordinate system. However, to use complex numbers for computa-

tions we have to define a rule for i:

i ∗ i = i2 = −1

Certainly, it is also possible to rotate around an axis with other

angles by modifying the multiplication factor. For example, a 45 de-

gree counterclockwise rotation can be achieved by multiplying pwith

(1+ i).

5

6 foundations

p = (3+ 2i) ∗ (1+ i) = (3+ 2i) + (3i+ 2i2) = 1+ 5

However, to determine

Figure 1: Quaternions

the rotation of a point in

a three dimensional space

we do need four dimen-

sional numbers, called quater-

nions H. The form of a

quaternion is a+bi+ cj+

dk with a,b,c,d ∈ R and

i, j, k are the quaternions

units [23, 43]. Also quater-

nions have a rule which

looks similar to the rule

for complex numbers.

i2 = j2 = k2 = i ∗ j ∗ k = −1

Quaternions contain real and complex numbers. However, due to

the higher abstraction we loose a property of the real and complex

numbers. Quaternions are non-commutative, hence we need a defini-

tion for the multiplication (see Table A.1). Following, we can rotate a

point in three dimensions by multiplying quaternions. Figure 1 pro-How do quaterions

work? vides a visualization of a quaternion, which we explain on a higher

abstraction level. To determine the orientation of a rigid body, quater-

nions use a vector ~v (v1,v2,v3) and an angle θ for rotating around this

vector ~v. Vector ~v passes through our rigid body which can be placed

anywhere in a coordinate system. We can rotate the pre-positioned

vector ~v around its own axis with an angle θ. Summarized, vector ~v

determines the rotation axis that simultaneously represents the posi-

tion of the rigid body, and θ gives the angle around the rotation axis

[23, 43]. In Figure 1 we see the real numbers a,b,c and d which we

define as:

a = cos(θ/2)

b = v1*sin(θ/2)

c = v2*sin(θ/2)

d = v3*sin(θ/2)

Summarized, quaternion multiplications describe rotations in three

dimensions. We have to redefine the multiplication for quaternions

(see Section A.1), and it has to be a unit quaternion with norm = 1.

Uq =
q

||q||
∀q 6= 0

When we use unit quaternions the inverse quaternion is q−1 =

a − bi − cj − dk which is efficient for calculations, and it does not

2.2 ros – robot operation system 7

change the size of the vector (rigid body). Note: The multiplication of

two unit quaternions results in a unit quaternion. [23]

Before we finally show the advantages of quaternions, following is

an example with a 90 degree rotation around the x-axis, and follow-

ing that another 90 degree around the y-axis. An example with the

commonly known Euler angles can be found in Section A.1 .

ax = 0.707;bx = 0.707; cx = 0.000;dx = 0.000

ay = 0.707;by = 0.000; cy = 0.707;dy = 0.000

q = (ax + bxi+ cxj+ dxk) ∗ (ay + byi+ cyj+ dyk)

Following the above introduced rules for quaternions we get a so-

lution in the form a+ bi+ cj+ dk. The result is q = 0.5+ 0.5i+ 0.5j+

0.5k which describes the orientation in the coordinate system. Now,

we can rotate an arbitrary vector ~q by multiplying p ∗ q ∗ q−1 to de-

termine the position of the rotate vector ~q.

Finally, we want to discuss the advantages to Euler’s representa-

tion related to our project. Quaternions are very powerful, and we Advantages for our

projectonly provided a brief overview related to our project. Quaternions

do not suffer from gimbal lock (see Section A.1). Additionally, we

can use interpolation between the quaternions, and linear matrix in-

terpolation between two orientations is possible. Moreover, the com-

putational complexity is significantly lower. We have three matrix

multiplications when using Euler angles; each has a complexity of

O(n3). However, with quaternions we only need a quarter of the com-

putational complexity. They also work independently of the coordi-

nate systems representation (left-handed or right-handed), due to the

uniqueness of quaternions, and we can easily calculate the inverse.

Finally, with unit quaternions we can generate a rotation matrix in

constant time O(1) (see Section A.1). These advantages led the deci-

sion to use quaternions for developing our prototype (see Chapter 6).

2.2 ros – robot operation system

ROS – Robot Operation System [48] is a common meta-operating

open source framework supporting the development of applications

for robots. It is a software providing various libraries and tools. Re-

garding their package structure, existing packages can be easily reused

in other projects. They are fully independent, and therefore appli-

cable in other projects. Thus, ROS has strict standards which must

be considered when developing applications with it. ROS provides

both a C++ and Python interface. The corresponding libraries are Properties of the

robot operation

system
called roscpp and rospy. In the following sections we elucidate the

important elements of ROS to provide a basic understanding of how

it works. However, it is only a brief introduction that is essential to

understand the next chapters; for further details see documentation1.

1 http://wiki.ros.org/

8 foundations

There are different ROS distributions, for our approach we used ROS

Indigo that works with Ubuntu version 12.04.03, due to the support

for our Baxter robot following Rethink Robotics recommendation.

We also want to briefly introduce two of the most common simu-

lation environments for robots called Gazebo2 and Rviz3. SimulationSimulation tools

Gazebo and Rviz environments allow us to the test (e.g. new algorithms, configuration

settings, sensors etc.) in a safe environment, very similar to the real

world. We can experiment with our robot without taking any risks. In

addition to that, in most cases robots are expensive, and we did not

want to damage the robot (e.g. servos or sensors) or the environment

(e.g. furniture).

Gazebo and Rviz also provide various tools which support people

during the development, making it easier to understand the some-

times very complex processes (see Section 2.2.4) or helping with de-

bugging. Furthermore, we were able to develop on our robot without

being physically close to it. All in all, our recommendation is to use a

simulation environment to improve to productivity, and moreover to

have a safe experiment environment.

2.2.1 Filesystem

In this section we describe the ROS filesystem consisting of the below

listed elements:

• Packages: ROS is organized in packages. They are the most

atomic, lightweight and independent items in ROS that can be

easily reused. This follows the concept of build your work on

the top of others. A package usually includes ROS nodes, ROS-

independent library, a data set, configuration files and third-

party piece of software4. Essentially, a package is a folder with

all the above mentioned content.

• Metapackages: Representing a group of related packages.

• Package Manifests: They are package.xml metadata files which

contain important information about a specific package such as

dependencies. These manifests must follow a predefined struc-

ture.

• Message types (.msg): Message descriptions are used to send in-

formation to communicate within ROS (Nodes). They are writ-

ten in a specific message description language. Further details

are available in Chapter 6.

2 http://gazebosim.org/
3 http://wiki.ros.org/rviz
4 http://wiki.ros.org/Packages

2.2 ros – robot operation system 9

Figure 2: ROS Service

• Service types (.srv): Services coordinate the request/response com-

munication via messages within ROS (Nodes). They are written

in a service description language similar to messages. There are

two different ways to communicate information in ROS, either

over services or topics using the publisher-subscriber pattern

(see Section 2.2.2). Generally, services are used when a remote

procedure call (RPC) is required, which is not possible with top-

ics.

Above, we introduced the most granular element in ROS, called

packages. To build a package we decided to use the package builder

Caktin. It provides a very effective way to structure workspaces and

packages. Catkin allows users to build multiple, but independent Catkin for building

workspacespackages together all at once5. After initializing the Catkin workspace,

users are able to modify, create, build and install certain Catkin pack-

ages. When building the workspace, Catkin automatically compiles

source code in different programming languages and checks linked

dependencies and libraries. To achieve this, every binary Catkin pack-

age has environment setup files (e.g. we used the bash shell and there-

fore our file was called setup.bash). Building a Catkin workspace can

be achieved through sourcing the setup file with the following com-

mand:

source /opt/ros/indigo/setup.bash

Subsequently, build the workspace of packages using:

catkin_make

Modifications of the code, dependencies and so on always result in

a rebuild of the workspace. Otherwise, the next ROS launch will not Important to

consider with

workspaces
consider the changes. With the command rospack list, users are able

to check which packages are currently installed.

A ROS package is a folder that contains the below listed content

files and subfolders. Following a first introduction in this section,

5 http://wiki.ros.org/catkin/workspaces

10 foundations

here is a more detailed look at the structure we must consider for

developing code for ROS in Chapter 6:

• include/package_name: header files (e.g. C++ headers)

• msg/: simple folder containing all messages

• src/package_name/: this folder contains the source files (Python,

C++)ROS package

structure

• srv/: contains all services

• scripts/: executable scripts

• CMakeLists.txt: used to build the software package

• package.xml: defines the properties of packages (name, version,

license)

2.2.2 Computation Graph

In this section we describe the general ROS workflow. Therefore, we

examine the ROS concept. For additional information look at the web-

site6. Essentially, ROS uses the following components: ROS Nodes,What is a

computation graph? ROS Master, Parameter Server, Messages (see Section 2.2.1), Services

(see Section 2.2.1), Topics and Bags. All of them provide different

data during a computation process. ROS wiki describes their Compu-

tation Graph as a peer-to-peer network which processes all data from

the above mentioned components together6. It is a distributed system

where each component provides specific information for the calcula-

tion process.

• ROS Nodes: A Node is a process within ROS that performs com-

putations such as path planning. Nodes are registered at the

ROS Master to provide a specific service or functionality in the

system (see Figure 3). Usually, there are many different nodes

which are reachable via an Uniform Resource Identifier (URI).

For instance, nodes can be programmed in different program-

ming language using the ROS libraries roscpp or rospy.

• ROS Master: The ROS Master provides a registration and nam-

ing services (see Figure 3). Otherwise, a ROS Node is not able to

find other ROS Nodes. That means they cannot exchange data

such as messages. The ROS Master enables the communication

channels within ROS, as well as to the network (see Section 5.2).

It also provides the Parameter Server.

6 http://wiki.ros.org/ROS/Concepts

2.2 ros – robot operation system 11

Figure 3: ROS Master communication

• Parameter Server: The Parameter Server is running on the ROS

Master. It stores important information with a key in a dictio-

nary providing it in the ROS network. Stored data are accessible

through the above mentioned key. Section 2.2.3 provides a ROS

command that requests information from the parameter server.

• Topics: Topics are used to exchange messages between different

ROS Nodes. Topics, or sometimes also called buses, work with

the publisher/subscriber design pattern. The topic name identi-

fies the message that has been published from a specific node.

All subscribers (nodes) can use the published message for their

own computations. A subscriber registers itself with a topic. A

publisher sends messages to the topic which can then be seen

by the subscribers. Figure 4 shows the workflow of a single mes-

sage published by a node through a specific topic. A topic can

also have various publishers and subscribers (not illustrated in

Figure 4). Topics have strict ROS message types and nodes can

only exchange messages when they match the message type.

• Bags: The Bag file format is used to record and playback serial-

ized message data such as sensor data. Note: We neither describe

nor configure them in our approach.

Figure 4: Publisher - Subscriber design pattern

12 foundations

Listing 1: Baxter URDF Model

<link name=" right_gripper">
<gravity>0</gravity>

<visual>

<origin rpy="0 0 0" xyz="0 0 0"/>
<geometry>

<box size=" 0.01 0.01 0.01 "/>
</geometry>

<material name="black">
<color rgba="0 0 0 1"/>

</material>

</visual>

<inertial>

<origin rpy="0 0 0" xyz="0.000000 0.000000 0.000000"/>
<mass value="0.0001 "/>
<inertia ixx="1e−08" ixy="0" ixz="0" iyy="1e−08" iyz="0"

izz="1e−08"/>
</inertial>

</link>

2.2.3 Robot Model

In this section we introduce the robot model provided through the

Unified Robot Description Format (URDF). We will use the URDF

information especially in Chapter 6. The robot model is stored in a

XML formatted file, baxter_urdf.xml. It describes the robot with all itsThe robot model is

used to... properties such as information about kinematics, dynamics and sen-

sors. The UDRF is dynamically generated on every robot start, and

eventually gets loaded to the parameter server providing information

in ROS. Generally, the URDF has a tree structure that can be used to

visualize the sometimes confusing XML file. Another tool we used in

our approach is the xml macro language Xacro7. It supports writing

and modifying of the URDF to produce a more elegant, readable and

clear XML. Usually, a robot model xml file contains all information

about a robot, thus it difficult to read due to its size. Listing 1 pro-

vides a code snippet of the baxter_urdf.xml. This is an example of

the right_gripper that shows the provided data in the baxter_urdf.xml

such as default position and orientation.

The RSDK on Baxter provides a package called baxter_description

containing the URDF and other accompanying meshes. The currently

stored URDF on the parameter server is exportable through a ROS

command, to ensure the latest version of the URDF is loaded.

$ rosparam get -p /robot_description | tail -n +2 >

baxter_urdf.xml

7 http://wiki.ros.org/xacro

2.2 ros – robot operation system 13

In general, with the rosparam command it is possible to export

stored information from the parameter server verifying the integrity

of the loaded data (see Section 2.2.2).

2.2.4 Tf - Transform

Before we begin to describe the complex transform library (tf), we

explain how the robot works in further detail. The position of each How can we localize

the joint positions?robot element/joint is always given through a coordinate system.

That means we have various coordinate systems in our robot (see

Figure 5). Basically, we have an original coordinate system called

/base, and the position of the /right_gripper coordinate system is rel-

ative to the original /base system. This applies for each coordinate

system in our robot. Figure 5 (d) shows all the coordinate systems of

Baxter’s kinematic chain elements (see Section 2.4) provided in the

URDF. The pink arrows, and yellow lines symbolize the relation to

the /base frame. Conclusively, we are able to determine the joint po-

sitions /right_gripper relative to our robot /base. Tf represents the rela-

tion between two frames with a 6DoF pose, consisting of a translation

and a rotation. Rviz provides tools/programs to request information

about the latest positions of the robot frames. Tf frames in ROS are

right-handed Cartesian coordinate systems with x forward (red), y

left (green) and z (blue) up (see Figure 5 (a)).

Tf is a library that runs in ROS, tracking all different coordinate

frames. It is a standardized tree structured protocol for distributing What is transform -

tf?information about multiple coordinate frames. For instance it is possi-

ble to ask the tf library: What is the position of the robot’s gripper relative

to its torso? This information is essential when working with a robot.

It is also possible to exchange data between more than one robot,

which was not necessary for our project.

There are two different kinds of tf nodes called broadcaster/pub-

lisher and listener, written in Python or C++. Following we give a

brief description about them:

1. Listener: These nodes are listening for coordinate frames that get

published in the system.

2. Broadcaster/Publisher: These nodes inform the distributed system

about coordinate frames related their position. Each element of

the robot usually has its own broadcast node.

Tf does not use a central storage like the parameter server (see

Section 2.2.2). Following that, a node does not have any information Mechanisms to

overcome issues in

the distributed

system ROS

about the history of the system when it starts. The advantage of tf

is, that we are able to get information directly, and furthermore we

know where it came from. In addition to that, without using tf we

have two significant problems. First, in distributed systems it is a

14 foundations

(a) Tf-coordinate system (b) All Tf’s in Baxter

(c) /base related to /grippers (d) Tf tree on Baxter

Figure 5: Robot Transforms visualized in Rviz

common problem that not all data are available at a certain moment.

The last update can be either five milliseconds or five seconds old.

The system automatically keeps track of all the updates. Moreover, it

provides a timestamp and a frame id. Hence, it is always clear where

our data came from and how old they are. Conclusively, we are able

to ensure that we use the right data (e.g. the latest updates of our

frames or if we want to compare data from a specific point in the

past (timestamp)). If we two specific frames from our robot, tf uses a

deep search in the tree to find the requested data (see Figure 6).

It is possible to visualize the tf tree getting a better understanding

of it. Figure 6 shows Baxter’s tf tree at a certain moment with five

different frames named /world, /base, /torso, /collision_head_link_1 and

/collision_head_link2. The figure provides information about the rela-

tion between /world and /base. The information broadcaster, averageTf - capabilities in

ROS rate, most recent transform and buffer length got displayed right af-

ter the launch. Here, we can see that each frame is related to the /base

2.2 ros – robot operation system 15

Figure 6: Baxter Frame tree example using Rviz

or /world frame. /Base and /world contain the same data, and therefore

we will always use the name /base frame for referring to the original

coordinate system. We even have the ability to display the relation

between two frames. Tf provides the timestamp, our Cartesian co-

ordinates x,y,z and the Quaternion/Euler angles for describing the

rotation in the spatial environment. The translations of the two coor-

dinate systems are described through a tf::Vector3, and the orientation

through a tf::Quaternion (see Section 2.1). The position tf::Pose of a

single coordinate system is always related to the robot’s /base system.

tf::Pose consists of a translation tf::Vector3 and a rotation tf::Quaternion.

For instance, Listing 2 shows the relative position between the

two frames /right_ gripper and /base. It describes a 90 degree rotation

around the y-axis (green). The second entry is recorded at the same

moment as Figure 5 (c), where the right gripper is 90 degrees rotated

around the y-axis. We can see that the quaternion and the euler angles

describing the rotation around the y-axis relative to our /base system.

However, there still is the problem that we need the data and the Tf - mechanisms

transform at the same time in a distributed system. Therefore, tf im-

plements a tf::WaitForTransform mechanism which blocks all required

Listing 2: Relation between two frames

At time 760.064

- Translation: [0.459, -0.553, 0.032]

- Rotation: in Quaternion [0.401, 0.916, 0.006, 0.002]

in RPY (radian) [3.129, -0.000, 2.316]

in RPY (degree) [179.267, -0.010, 132.687]

At time 763.104

- Translation: [0.459, -0.553, 0.032]

- Rotation: in Quaternion [0.000, 0.703, 0.000, 0.703]

in RPY (radian) [0.000, 1.559, 0.000]

in RPY (degree) [0.000, 89.346, 0.000]

16 foundations

resources until either a predefined timeout is reached or the trans-

form is available. Following that, it can delay the whole system, and

hence there is a non-blocking solution for it called tf::MessageFilter.

For instance, if the system has to wait for one second to process the

required data, it delays the entire process for one second. Time crit-

ical applications should consider this, when choosing one of these

functions.

Currently, most robots use the second generation of tf, called tf2. It

provides more functionality, but it basically follows the concept of tf.

2.3 inverse kinematics

Inverse kinematics (IK) is a well-known problem in robotics, but also

in other areas such as computer games and animations. Particularly,

in robotics it is a mathematical process which determine the joint pa-

rameters for each end-effector of a robot [46]. It is a non-linear equa-What is Inverse

kinematics? tion to map joint parameters to a robot configuration [17]. By robot

configuration we mean its kinematic chain (see Section 2.4). In Fig-

ure 7 we see an example with 6 degrees of freedom (DoF). Each joint

can rotate around an angle θ to reach the requested goal position Γ 6.

In Section 2.2.4 we saw different coordinate frames for each kinematic

chain element related to the original /base system Γ 0. In Figure 7 we

also see these frames Γ , where the kinematic chain represents a possi-

ble trajectory from the original frame Γ 0 to the goal frame Γ 6.

Basically, we provide a desired end-effector positions for the robot,

and the IK algorithm calculates the joint angles to reach the requested

end-effector pose. After the IK solver finds a solution, the robot can

move its arm chain with a specific trajectory to the goal position like

in Figure 7. They are three major groups of algorithms to solve theDifferent groups of

algorithms IK problem distributed in analytical, geometrical and numerical ap-

proaches. It depends on the scenario and the robot which algorithm

performs best. Generally, analytical and numerical algorithms are the

most common methods to solve the IK problem with robots. The

counterpart of the inverse kinematics is the forward kinematics. Here,

the algorithm calculates the corresponding Cartesian coordinates for

given robot joint angles.

In Chapter 6 we use a numerical solver and we will also briefly

introduce an analytical approach to solve an inverse kinematics prob-

lem. Analytical approaches, however, are closed-form equations which

get coordinate inputs and outputs the joint parameters. Numerical ap-

proaches use interpolation to find approximate solutions (advantage

of quaternions, see Section 2.1). Following the IK problem formalism

for our robot with 7DoF. We know the desired end-effector pose e,

also called the goal position.

e = [e1, e2, ..., e7]

2.3 inverse kinematics 17

Figure 7: Inverse kinematics problem of a 6DoF robot8

The depiction of end-effector position is related to the /base frame.

Generally, it is a Cartesian coordinate system representation with

standard x, y, z and a quaternion q (see Section 2.1). Summarized,

we have a translation and an orientation, and we need the joint an-

gles for moving the kinematic chain to the goal position in relation

to its original /base system. We are looking for seven joint values θ,

because our robot arm has 7DoF, shown below.

θ = [θ1, θ2, ..., θ7]

IK requests are extremely complex. First, there are several possible

trajectories to get from the current end-effector position to the goal

position (see Figure 7). Furthermore, our robot has 7DoF, and thus Complexity of IK

the algorithm has to consider seven different joints. Table 2.4 shows

the different capabilities and limitations of the Baxter robot joints.

For example, some are twist joints, others are bend joints, and all of

them provide different angles they can rotate. The IK algorithm must

consider all joint limits, and possible joint collisions of the kinematic

chain, when calculating the joint angles. In contrast, Forward Kine-

matics calculates e = [e1, e2, ..., e7] for given θ1, θ2, ..., θ7.

e = f(θ)

In Inverse Kinematics it is vice versa. We know the goal position in

our Cartesian coordinate representation and we want to calculate θ.

θ = f-1(e)

Following the mathematical definition we have the current joint

angles and we want to calculate the change in joint angles needed

to reach the requested end-effector position. In this thesis we do not

want to go deeper into the complex calculation of a 7DoF inverse

kinematics. They are different algorithms which can solve the above

8 http://mechanismsrobotics.asmedigitalcollection.asme.org

18 foundations

Figure 8: Baxter robot10

shown equation such as the popular Ocoros KDL [53]. Common nu-

merical approaches like KDL uses Jacobian methods, pseudoinverse

or Newton’s method for their calculations. However, it is not neces-

sary to understand how the IK algorithm works for the rest of the the-

sis. More information about IK, analytical and numerical approaches,

as well as examples can be found at [3].

2.4 baxter research robot

In this section we give a short introduction to the Baxter robot we

used for our prototype. Baxter is a very common research robot devel-

oped by Rethink Robotics9. Besides, its presences in research, Baxter

is also used in industry, mainly for packaging and handling. Below,

we describe the important components of Baxter with particular focus

on our project.

Baxter is primarily developed as a Cobot (collaborative robot), that

means it can work collocated with humans. Therefore, Rethink Robotics

implemented safety mechanisms to ensure Baxter cannot hurt hu-

mans (e.g. when it works close to people it automatically adjusts the

speed of its movements11).Basic knowledge

about Baxter There are many different possibilities through which Baxter can

grasp objects. From the reader’s perspective, on its left arm the stan-

dard gripper is mounted (see Figure 8). The right arm shows another

kind of gripper called vacuum. There are various grippers which can

be mounted on its arm, allowing it to grasp different objects. This re-

sults in a higher capability, making the robot more efficient in various

applicable scenarios. As with most of today’s robots, Baxter has many

9 http://www.rethinkrobotics.com/
10 http://www.pullmanacademic.com.au
11 http://www.rethinkrobotics.com/safety-compliance/

2.4 baxter research robot 19

Figure 9: Baxter robot arm12

different sensors such as sonar, cameras etc. For information about its

construction see the Rethink Robotics website12. The sensors we used

for our project are described in Chapter 6.

For understanding the future chapters we have to define the term

robot kinematic chain. Baxter has 7DoF, it basically means that each ...robot kinematic

chain?robotic arm has 7 joints. Each joint has a specific degree of freedom

that it can move (see Table 2.4). Figure 9 shows a Baxter Robot arm,

where joints are marked with an arrow, and its joint name. They are

distributed in three sections:

1. S = Shoulder (2 joints - S0,S1)

2. E = Elbow (2 joints - E0,E1)

3. W = Wrist (3 joints - W0,W1,W2)

We distinguish between bend and twist joints. S1, E1 and W1 are

bend joints, and the remaining are twist joints. Table 2.4 shows the

range of motion of each joint in degrees and radians.

A robot kinematic chain describes all joints/elements between the

base of a robot and its end-effector (in our case Baxter’s gripper). Gen-

erally, a robot end-effector is a name for the device at the end of the

robot arm e.g gripper or vacuum (see Figure 8). In the following chap-

ters we will only use the term robot kinematic chain. Furthermore,

each chain element has its own coordinate system (see Section 2.2.4)

due to the tf library and is described in the URDF.

12 http://mfg.rethinkrobotics.com/wiki

20 foundations

joint range (degrees) range (radians)

S0 (Twist) 194.9 degrees 3.4033

S1 (Bend) 183 degrees 3.194

E0 (Twist) 349.979 degrees 6.1083

E1 (Bend) 153 degrees 2.67

W0 (Twist) 350.5 degrees 6.117

W1 (Bend) 210 degrees 3.6647

W2 (Twist) 350.5 degrees 6.117

Table 1: Range of motion - Baxter joints

2.5 optitrack

In this section we introduce our tracking system OptiTrack [47], which

is currently one of most common motion tracking/capturing systems

worldwide. It is used by many companys such as NASA, Google,

BOEING and UBISOFT [47]. The requirements for choosing a systemRequirements for

choosing our motion

capture system
were 6DoF tracking, high precision and low latency. Furthermore it

should be able to recognize fast movements, especially in case of ro-

tations. All these features are given with OptiTrack according to their

website [47]. Therefore, we decided to use an approved system like it

for our prototype.

OptiTrack works with infra-red light cameras (see Figure 10 (1)),

capturing reflective light from objects. At this point the retro-reflective

markers are essential (2). They are attached to objects or items we

want to track. Through the captured reflections, cameras send posi-

tion updates to the software, which determines the exact position of

these markers, and consequently of the object.

Figure 10: OptiTrack cameras and retro-reflective marker

2.5 optitrack 21

OptiTrack provides a software, Motive, for performing these calcu-

lations. Following, we give an brief overview about Motive and its

streaming plugin for Unity3D. In Chapter 5 we will see more of its

functionality, especially during the calibration and wanding process

(see Section 5.1). Motive offers a preview of each camera connected to

the host computer (see Figure 13). It is possible to see reflections and

interference with objects and/or other cameras in the spatial environ-

ment. It is very helpful when setting up such a tracking environment.

It helped us, as we sought the best camera positions and settings for

our project. We used the rigid body version of Motive, but OptiTrack

also offers a body version for tracking human bodies.

3
R E L AT E D W O R K

We want to support remote collaboration on physical object-related

tasks, thus we take a look into human-human object-focused collabo-

ration. Therefore, we use the related work chapter to discuss funda-

mentals in that research area and how it impacts our work in remote

collaboration. Particularly, we will discuss three related areas that our

work is build on. First, we outline recent work on object-focused re-

mote collaboration, where collaborators discuss and analyze physical

objects in remote contexts. Next, we discuss the role of gestures, ori-

entation and perspective of objects in collocated collaboration. Finally,

we briefly discuss past research on telepresence robots.

3.1 challenges of object-focused collaboration

Back in history people always had to find a way to communicate

with each other to reach their goals, especially when people work col-

located in groups or pairs. It is the most natural process of humans

e.g. to administrate, distribute and organize essential resources. Apart Introducing the

related workfrom the important life safekeeping tasks, humans collaborate in ev-

ery day’s life and it seems very trivial. Previous studies have shown

that human-human collaboration is complex process that depends on

various circumstances. For instance, we know from groupware and

Computer Supported Cooperative Work (CSCW) studies that human-

human collaboration is influenced by the environment, objects, and

other people [1]. To design technologies that support and consider

these different variables, it is necessary to understand the behavior

of collaborators. Hence, we can design novel technologies to support

collaboration. Below, we examine into recent work in object-focused

collaboration.

In object-focused collaboration, a physical object is the center of

collaborative discussion and activity. For instance, Licoppe et al. [38]

explore how video is used to support object-focused collaboration

in everyday video chat conversations. Beyond the issue that artefacts

need to be placed in view of the camera, Licoppe et al. [38] show that

how the objects are revealed and manipulated together with ongoing

discussion plays an important role in conveying attitudes and interest

between video chat participants. For instance, the way that a label on

a box of biscuits is revealed to the camera (and a remote partner),

signals and emphasizes what is important to each about the object.

Similarly, a viewing participant may cock his/her head or appear to

move closer to "get a better look", even though this has no meaningful

23

24 related work

practical effect; rather, the purpose is to engender feelings of interest

in the shared experience.

This careful, thoughtful use of object configuration (and camera

orientation) may not always happen. Mok & Oehlberg [42] explored

a remote critique scenario, where participants were to explain how

a complex object (prosthetic hand) worked to an audience via video

chat. Their findings reveal that participants frequently forgot to show

the audience aspects of the object, or even to ensure that the audience

could see the object. This was partly due to the complex interplay

between epistemic action (actions used to discover information about

the object) and pragmatic action (actions used to explain how the

object worked) [30]. It may be that the complexities of perspective

and the pragmatic situation (rather than personal, in Licoppe et al.

[38]) lends itself to more focus on the object rather than a remote

party. Similarly, Jones et al. [25] describe the challenges of positioning

a mobile camera view to effectively capture aspects of objects and

scenes and convey them to a remote party as "camera work".

Our interest is in building from this work to understand whether

the conventional face-to-face, opposing view perspective of video chat

systems is a source of some of these problems, and whether an actu-

ated physical proxy can help address these challenges.

3.2 gestures , perspective and orientation in remote col-

laboration

Considerable prior work has explored how gestures support collabo-

ration, both from observational studies of collocated collaboration, as

well as next-generation systems support. We briefly outline this work,

and then illustrate how our work parallels this approach by focusing

on how perspective and orientation can be supported.

Gesture: Tang’s seminal studies of collocated interaction on tables

underscored the importance of gestures in collaborative work [56].

He discusses how collaborators use hand gestures to communicateGestures in remote

collaboration significant information such as enacting ideas or pointing to objects.

To support gestures, researchers have explored marking up a remote

video (e.g. [10, 14, 15, 19, 34]) as a proxy, included simple representa-

tions such as telepointers [18], and explored video overlays of bodies

and arms [29, 54, 55, 57, 58] to convey additional subtleties of hand-

based gestures [28]. Evaluations of these systems not only reinforce

the importance of gesture, but also reveal the subtle ways in which

gesture enables and engenders collaborative work. In the same way

that this seminal work on gesture motivated subsequent system work,

related studies of orientation and perspective motivate the present

work.

3.3 telepresence robots 25

Orientation: Kruger et al. [33] revealed the important role of ob-

ject orientation by studying how people collaborate on a puzzle task. The three distinct

roles of object

orientation
Based on their observational study, they articulate three distinct roles

of orientation in collaborative work: comprehension, where the pur-

pose of orienting an object is to personally understand/explore the

object; coordination, where the object is reoriented to coordinate ac-

cess and to define personal/shared working areas, and communica-

tion, where the object is re-oriented to explain something to another

person. It stands to reason that these functional roles of orientation

can play an even more important role in object-focused remote col-

laboration, particularly with three-dimensional objects (rather than a

flat artefacts). Our work in designing ReMa focuses on this aspect of

object-focused collaboration, where we explore how explicitly reori-

enting a remote object helps and hinders remote collaborative work.

Perspective: In remote collaboration, collaborators usually have dif-

ferent perspectives of the workspace (due to camera placement, though

cf. [10, 24]). This is even more problematic in object-focused collabo-

ration. One cannot, for instance, rotate a piece of paper for a remote

collaborator if s/he is not looking at the paper at all. This is a smaller Perspective issues in

remote collaborationvariation of the problem described by Luff et al. [39], where one col-

laborator’s understanding of the space, and how one orients and cre-

ates gestures is more difficult to (and sometimes inappropriately) per-

ceive at a remote location. Jones et al. [25] discuss particularly how

this happens during mobile video chat, where handheld perspectives

of the scene are challenging to produce and capture properly for the

remote collaborator. Fussell [13] explores variations on camera angles

of a remote workspace for physical tasks, finding that scene-focused

perspectives outperform head-mounted camera angles. Tang et al. [55]

shows that task demands may be more easily addressed with some

perspectives than others. For instance, shared perspectives are use-

ful for reading text, whereas asymmetric perspectives are desirable

(e.g. to create shared vs personal workspaces). Our work begins from

the standpoint that different perspectives may be useful, particularly

given that in collocated collaboration, people physically occupy dif-

ferent locations in space. Consequently, there is reason to believe that

people are accustomed to alternate views of a physical object (e.g., in

a face to face situation).

3.3 telepresence robots

Our study builds on a long history of using robots to support telep-

resence [16]. One line of robotic telepresence research has supported

remote camera control, either through a robotic arm [59] or through Using robots to

support remote

collaboration
a mobile telepresence robot (e.g. [35, 44, 50]). Our research instead

uses telemanipulation, where a robot manipulates objects in a remote

environment [22, 36, 61]. In our case, a human collaborator is located

26 related work

in that remote environment. We provide detail about our remote ma-

nipulation system next.

4
S Y S T E M D E S I G N

In Chapter 2 we introduced the two main components we used for

developing our prototype system, the Baxter robot and the OptiTrack

system. Following the related work in Chapter 3, we wanted a further

understanding of how perspective and orientation is used in object-

focused remote collaboration. Hence, we designed ReMa - Remote

Manipulator.

Our eventual goal of ReMa is to allow two collaborators to explore

physical objects, where each collaborator’s interactions are reflected

Figure 11: The ReMa system includes a Tracking Site (TS, top-left) and a
Manipulator Site (MS, top-right) with bird house object. As the
birdhouse is rotated at the TS, the proxy birdhouse at MS is also
rotated reproducing a Shared perspective

27

28 system design

at the remote site. However, enabling this sort of bidirectional ma-

nipulation comes with a well-known set of problems, particularly

when collaborators are manipulating the object in opposition to one

another (e.g. [6]). Thus, in this first iteration, our focus was specifi-What is ReMa ?

cally on one-way communication of the orientation of the object, ab-

stracted from manipulations of the object in space. This focusing step

allowed us to concentrate on the effectiveness and importance of ori-

entation and perspective (i.e. via our study) without having to con-

cern ourselves with resolving the challenges of movement tracking

and bidirectional communication.

As illustrated in Figure 11, ReMa comprises two separate sites: a

Tracking Site (TS) and a Manipulator Site (MS). As we see later in this

thesis, Figure 25 shows that there is an option for an additional video

medium which was generally disabled in the ReMa-only system.

Tracking Site: At the Tracking Site, a person’s manipulations on anReMa inculdes two

sites object are captured – both the object’s position in space, as well as its

orientation.

Manipulator Site: Manipulations from the Tracking Site are transmit-

ted to the Manipulator Site and get displayed on a similar proxy ob-

ject. We can change what is rendered (e.g. in this iteration, orientation

only), or how the captured information is interpreted and executed

(e.g. Opposing or Shared perspective). This basically means that we

provide two different perspective modes how Baxter will reproduce

movements. Below we describe the two different perspective modes

in ReMa (see Figure 12).

Pausing: We also designed a pause mechanism, which allows either

collaborator to pause the Manipulator Site in the current orientation.

This temporarily disables the Manipulator Site from continuing toPausing mechanism

mimic the object manipulations from the Tracking Site. We built this

into ReMa to allow participants to look at their proxy object indepen-

dently without having the direct connection between one another.

Figure 12: Perspectives: Opposing vs. Shared

system design 29

Opposing perspective: Here, people do not share the same perspec-

tive to the object (see Figure 12 (left)). This, for instance, embodies a

common situation where collaborators sit at opposite sides of a table,

or in video face chats such as Skype or Google Hangouts. Figure 12

(left) shows two humans who are looking at an object from Opposing

perspectives. In this case, ReMa reproduces manipulations mimicking

a face-to-face collocated scenario.

Shared perspective: In Shared perspective, both persons share the

same perspective/view to the object (see Figure 12 (right)). It embod-

ies a common situation where collaborators sit at the same sides of a

table. Here, ReMa reproduces movements like in a side-by-side collo-

cated scenario.

5
T E C H N O L O G I E S

In this chapter we show the technologies setup we used to develop

our prototype system, described in the previous Chapter 4. It is not

a detailed guide for setting up all components in the whole system.

Information and more detailed overviews can be found on the corre-

sponding websites1,2. In the following sections we present our track-

ing and robot setup, and we illuminate and discuss different setup

possibilities.

5.1 tracking & calibration

The following Figure 13 shows the architecture of all tracking system

components. In our final setup we used six USB Flex 13 cameras.

Furthermore, we also used an OptiHub to synchronize the cameras

and process the collected data to the host computer. All cameras were

connected via USB 2.0 cable to the OptiHub which was also directly

connected to a computer.

There are many different opportunities to construct and structure

an OptiTrack environment. Some examples can be found at http://

Optitrack.com/systems/. The following suggestions should be con-

sidered when setting up an tracking environment:

1. Avoid the set up close to open windows. Incoming sunlight or

other infra-red light sources such as computer mouses interfere

with the cameras. This leads to worse tracking results or even

could system stop the system from working entirely. Important hints for

setting up tracking

environments2. Reflective floors and illuminating obstacles should be taped or

covered with non-reflective materials e.g. sheets.

3. OptiTrack cameras can also interfere with each other, therefore

do not place cameras facing each other.

These recommendations are very important in ensuring the system

works with a high precision and properly.

We built our OptiTrack setup with the support of an self designed

aluminum frame (80/20 material) (see Figure 14). This frame pro- Deciding on the

number of cameras

to use
vides a 1m x 1m x 1m space to manipulate an object. In a first ap-

proach we used eight Flex 13 cameras, but we had issues with cam-

era interference (see suggestion (3) above). We decided to remove two

1 https://www.Optitrack.com
2 http://www.rethinkrobotics.com/

31

http://Optitrack.com/systems/
http://Optitrack.com/systems/

32 technologies

Figure 13: Shows our OptiTrack architecture with all components.
Symbols are adapted from the offical OptiTrack website2

cameras from our designed frame to get rid of these issues. The re-

sult from this was satisfying. We also tested four cameras, that means

without both cameras in the middle height of the frame (see Fig-

ure 14). It worked fine, but we decided to keep six cameras to support

our main captured area against errors and obstacles.

After building the frame, setting up all components and the envi-

ronment, we had to calibrate our tracking volume. Once, the calibra-

tion is finished, everything had to stay in the exact same position.

Changes within the setup resulted in a mandatory re-calibration of

the system.

Following is a short definition that explains the term camera calibra-

tion in the context of motion capturing with OptiTrack:...what means

camera calibration?

"During camera calibration, the system computes position

and orientation of each camera and amounts of distortions

in captured images. Using calibration data, Motive con-

structs a 3D capture volume. Specifically, this is done by

5.1 tracking & calibration 33

Figure 14: Our final OptiTrack setup with six "red circled" OptiTrack USB
Flex 13 cameras attached to an aluminum frame

observing 2D images from multiple synchronized cameras

and associating the position of known calibration markers

from each camera through triangulation." [47]

Using the definition above, we collected calibration data from all

cameras to calculate and construct our captured volume and synchro-

nize the cameras. This is a mandatory step, especially when 3D in-

formation about the object (i.e. markers) is required. For the next

calibration step, masking, we followed the setup documentation [47].

Masking basically means marking all pixel errors in the camera pre-

view, in order to tell the tracking system to not consider these pixel

errors later in the calculation. Usually, these errors are a result of at

least one of the above mentioned issues (e.g. interference with another

tracking camera, due to them facing each other).

Wanding is a part of the calibration and we want to provide a more

detailed look into it. As mentioned above, we must collect calibration

data. Therefore, a calibration wand is required (see Figure 15). These Wanding process

tools are used to collect wanding samples from each camera while

waving it within our future captured volume (i.e. in front of the track-

ing cameras). Once enough samples were collected we initiated the

calculation process to render the point cloud.

The standard calibration wands called CW-500 and CW-250 are de-

veloped to be used in bigger captured volumes (see Figure 15). Higher

precision in smaller spaces is only attainable with smaller wanding

34 technologies

Figure 15: Compare CW-500 (top) and CW-250 (right middle) with our cali-
bration wand (left middle/bottom)

tools, due to the amount of samples which can be collected in a

smaller space. Hence, we built our own wanding tool (see Figure 15)

for getting the accuracy we needed. We used wood, wood glue andBuilding our own

calibration wand three retro-reflective markers. It is very important to use the right

proportions that the system then can recognize the wanding tool. Be-

tween the retro-reflective markers we chose 40 millimeters and 120

millimeters distance which conforms to the supported standard ra-

tio.

What we did not consider in our first prototype, was the property

of wood that it reflects infra-red light. As a consequence we could

not use the first prototype. For solving this problem we painted our

calibration wand in a matt black color to avoid reflections during

the calibration. After that, we could use it for wanding the tracking

volume (see Figure 16 (a)).

Figure 16 shows the different wanding steps in a single camera pre-

view. Figure 16 (b) shows the beginning of the calibration process,

due to the amount of samples that have been collected. In contrast,

the end result in Figure 16 (c), where a sufficient number of sam-

ples are collected. This is a simple visualization making it more clear

when the wanding process is finished3. After wanding is completed,

the next step is to initiate the calculation Figure 16 (d), setting the

ground plane and determine the position of the cameras in the Carte-

sian coordinate system. Here, we basically followed the set up guide

at [47].

3 Generally, 2,000 - 10,000 samples are enough [47]

5.1 tracking & calibration 35

(a) Start wanding (b) First samples are collected

(c) Sufficient amount of samples (d) Calculation process

Figure 16: Wanding process camera preview.

As mentioned previously in Chapter 4, we want to track an ob-

ject in a spatial environment. For realizing that, we had to define a

rigid body in Motive. At least three visible retro-reflective marker re-

flections are required to create a rigid body in Motive, allowing it to

continuously track the object. That implies that we needed at least

three retro-reflective markers attached to our object.

To define a rigid body, we placed the prepared object with the at-

tached retro-reflective markers into the tracking volume (see Figure 17

(a)). After that, we assigned each camera the exact position of every

single retro-reflective marker (see Figure 17 (b)). Following, the Op-

tiTrack software Motive creates a rigid body object (see Figure 17 (c)).

Subsequently, the system could track our defined object. It is also

possible to track several objects with different properties or marker

setups at the same time, due to unique identifiers (UI).

For streaming data from the tracking software Motive to Unity3D,

a rigid body object using a cube (see Figure 17 (d)) is required. How- Streaming-plugin

for Unity3Dever, we needed data from Motive, in order to animate the rigid body

object in Unity3D. OptiTrack provides a streaming plugin that allows

real-time streaming either with live or recorded data from Motive to

36 technologies

(a) Object placed in tracking volume (b) Determine position of the markers

(c) Created a rigid body (d) Animated object in Unity3D

Figure 17: Object tracking

Unity3D. Basically, it uses a client-server approach, where Motive acts

as a server and Unity3D as a client. We configured a Motive server

as described on their website, and imported the required plugin into

our Unity3D project4. In the last step, we attached the OpitrackRigid-

Body.cs to our rigid body object in Unity3D which eventually could

receive tracking data from Motive (see Section 5.1). When we used

more than one object at the same time, we had to use UI’s telling

both systems which object corresponds to which data stream as men-

tioned above. The position and orientation of the object is represented

through the pivot of the constructed rigid body (seeFigure 17 (c));

marked in yellow.

Information about the tracking settings we chose can be found in

Section A.2.

4 http://v110.wiki.Optitrack.com

5.2 baxter setup 37

Figure 18: Baxter setup with all relevant components5

5.2 baxter setup

Here, we give a brief introduction about our components in our Bax-

ter robot setup. We used a Baxter research robot (model-BR-01) up-

dated to the latest RSDK version 1.2.0, and a standard host computer

with an Ubuntu operation system (OS) for our workstation. We also

installed the robot operation system (ROS - version Indigo) on our

Ubuntu machine. The PC was connected to the internet, and further-

more to our local network (see Figure 18).

We also used a Netgear6 network switch between the robot and our

local machine. The components within our system were connected

via Ethernet Cat 5 cables. Note: It is very important to consider that

the RSDK version on your robot must match the RSDK version of the

workstation.

Baxter is reachable in the network with either its hostname (com-

monly its serial number) or its Internet Protocol (IP) address. There-

fore, we had to configure the communication from our workstation

to Baxter and vice versa. The ROS Master (see Section 2.2.2) running

on Baxter provides the interface for the communication over IP with

Baxter. It has a specific Uniform Resource Identifier (URI) consisting

of the above mentioned serial number and a port number.

Our workstation must be able to resolve the ROS Master URI to

communicate with it. Additionally, the ROS Master must be able re- Communication

within the systemsolve the IP address of our Ubuntu workstation. Basically, it is a stan-

5 http://www.iconarchive.com
6 https://www.netgear.com/

38 technologies

dard network configuration considering the above mentioned prop-

erties when setting up the communication in the network. The name

resolving works with a .bash rc file executed on the host computer.

The communication between our workstation and the Baxter (ROS

Master) can be verified through sending a ping to our ROS Master

(Baxter), but vice versa it is necessary to test it via SSH following the

Rethink Robotics Hello Baxter tutorial Step 2: Verify ROS Connectivity7.

After verifying the communication between the components in our

system we were able to launch ROS on our workstation. Finally, we

enabled the robot to open the communication channels to ROS. This

can be easily done by using the provided Python script from Rethink

robotics called enable_robot.py.

7 http://sdk.rethinkrobotics.com/wiki/Hello_Baxter

6
I M P L E M E N TAT I O N

In this chapter we provide a detailed look into the implementation of

our system. First, we give an overview of the system architecture. Sub-

sequently, we elucidate and discuss every component of our system.

We start with the server program and its functionality, as well as the

network communication. After that, we show our tracking program

and discuss challenges we encountered while implementing it. Then,

we explain the core of our system, inverse kinematics, and provide in-

formation about the package we created. Furthermore, we will show

alternative solutions and contrast them with our approach. Follow-

ing that, we explain the synchronization mechanism we used. Finally,

we show the system modifications we made in order to conduct HCI

studies.

6.1 architecture

Figure 19 shows a high level architecture of our system. Following the

previous Chapter 4, we have a Tracking Site and a Manipulator Site.

In the previous Chapter 5, we introduced the main system compo-

nents, OptiTrack and the Baxter robot, and also briefly explained the

software technologies we used. In this section we want to describe the

general workflow in our system, in order to provide an understand-

ing of how it works. It is a highly abstracted description, and we will

discuss every component shown in Figure 20 later in this chapter.

Figure 19: High level system architecture: Shows the Tracking Site with our
motion capture rig OptiTrack and the client program (left), and
the Manipulator Site with the Baxter robot and the server pro-
gram (right)

39

40 implementation

Tracking Site: We track object manipulations through humans (see

Figure 14). The infra-red cameras send their captured information toBasic workflow

within the system Motive which combines it to determine the position of the object in

a Cartesian coordinate system in relation to its spatial environment.

Motive streams these coordinate updates to Unity3D via its streaming

plugin. The client program stores the current position of the object to

compare each coordinate update received by Motive with the stored

position (see Figure 19). If the system recognizes a difference it contin-

ues with processing the update (Trigger principle). It encapsulates

the updated coordinates in a package and send it to our server at the

Manipulator Site. Furthermore, it sets the update coordinates as the

current coordinates.

Manipulator Site: The server receives the data package. All previous

steps worked with a standard Cartesian coordinate representation of

the position, but Baxter is unable to execute a movement to a position

given through Cartesian coordinates. Baxter’s end-effector position is

represented by its seven joint angles. Simplified, we have a position

and a quaternion, and we are seeking the robot’s joint angles for mov-

ing its arm chain to the requested goal position. It is a well-known

problem in robotics called Inverse kinematics (IK) (see Section 2.3).

After an algorithm solves the IK problem, we send joint updates to

Baxter, and it adjusts the position of its arm chain.

The following sections provide a detailed look at each of the above

mentioned steps and is shown in Figure 14.

6.1 architecture 41

Figure 20: Technical system architecture

42 implementation

6.2 server

In this section we explain the communication between the various

components in our network. Moreover, we give a further look into

our server program consisting of different scripts for network com-

munication, robot initialization and data processing/administration.

As we know, the communication within the internet and in local

networks work with different layers (see OSI-Model1). To exchange

messages from one host to another within a network, we commonly

use IP-networks. There are various protocols we can use for the com-

munication (e.g. TCP, UDP, FTP and SMTP). Each of these protocols

are used in specific cases. In our project, we exchange bits of dataWhy TCP ?

between a server program and a client. Therefore, it is reasonable to

choose either TCP or UDP. Both use the transport layer of the OSI

model. The decision depends on different circumstances. In general,

TCP verifies that a message reached the destination host. Therefore,

the destination host sends a confirmation back to the sender. If it

does not get a response from the recipient, it can send the message

again. In contrast, UDP does not verify that the message reached the

goal, and thus it is faster. We decided to use TCP in our system ap-

proach due to the verification and the non-significant performance

losses compared to UDP.

We used Python for programming our TCP server for two simple

reasons. First, using Python to program a TCP server is very simple

and can be done with a few lines of code. Second, we also initializedRobot initialization

and server program the ROS nodes in Python (rospy), due to the documentation provided

by Rethink Robotics. It is also possible to use C++ (roscpp) to pro-

gram the TCP server and initialize the robot, but we decided to keep

our first approach with Python. We did not see a lack in performance

which could justify the effort to change the programming language.

We also used sockets for our client-server communication, where a

server is listening to its socket for a client request. If the request was

successful, server and client finally communicate directly. The connec-

tions work over a combination of IP and port number. When choosing

an arbitrary connection port for the TCP server, we considered that it

must be open in the router configuration, and enabled for TCP com-

munication.

The server imports the ROS interface to enable the communica-

tion. It is divided into five python programs which provide different

functionality. Above, we explained the network part of the server. We

also implemented programs for the robot grippers, head and screen

manipulations, and to administrate and process received coordinate

updates.

Our server program gets TCP packages over the network, encap-

sulate the packages and processes this data for further computations.

1 http://docwiki.cisco.com/wiki

6.2 server 43

Basically, it gets a position consisting of x, y and z, and a quater-

nion q (see Section 2.1). The data undergoes consistency checks e.g.

logical checks. The system always knows the current position and

orientation of the end-effector in Cartesian coordinate representation.

Furthermore, it knows the position and orientation of each kinematic Communication

with the IK serviceschain element relative to the origin, due to the transform library (tf -

see Section 2.2.4). The program calculates the corresponding joint an-

gles with an IK algorithm for the requested position (see Section 2.3).

The IK algorithm runs as a service in ROS (see Section 2.2.2). For

processing the required data, we needed appropriate message types

(see Section 2.2.1). Therefore, we used four different messages to com-

municate with the services, and to get the current joint angles of the

robot. It was not necessary to develop custom message types, because

ROS and Rethink Robotics already provided them. We used Pose and Required message

typesPoseStamped from the ROS geometry_msgs package to build the IK

message type. For the communication with the IK service, we also

used the existing SolvePositionIK message type from baxter_core_msgs.

In order to compute the IK, we call the responsible service with

its name and corresponding message type (see Listing 3 (1) and (2)).

After that, we build the message with the latest data from our dis-

tributed system (see Listing 3 (3)). For getting the required informa-

tion from the distributed system we used the wait_for_service() func-

tion. If the IK algorithm finds a solution, and the result passes another

consistency check, it eventually sends the joint angle updates to the

robot to adjust its position (see Listing 3 (4)). Otherwise, the error

handling routine releases the resource and unblocks the system (see

Section 6.6).

To use the grippers, the server program has to initialize and cali-

brate them. Subsequently, we can easily control them in the program

at any time. The gripper.position() function receives a value between

zero and 100, where zero means that the gripper is closed and 100

means the gripper is entirely open.

To represent the current state of Baxter, we decided to use head

movements and different faces on its screen. Generally, in our ap- Embody current

robot stateproach, Baxter’s head follows the end-effector during a movement

and focuses on the person in front of Baxter when the movement is

finished. To realize that, we mapped the head position to the y value

of the robot’s end-effector frame. The position of the head is given

through the tf library. However, Rethink Robotics provides an easy-

to-use interface to manipulate the head position of the robot. The

head can move 180 degrees to cover the whole workspace in front of

Baxter. Regardless of whether the robot uses its right or left arm, the

head can always follow the position of the object. Obviously, it can

only follow one robotic arm which can be chosen by the user. After

a movement is finished, Baxter’s head will face the user. We did not

44 implementation

Listing 3: Calling IK service

def send_trac_ik_request(limb, pos, orient):

(1) Servicename/path

ns = "ExternalTools/" + limb + "/PositionKinematicsNode/
TracIKService"

(2) Calling service (name, msg type)

trac_iksvc = rospy.ServiceProxy(ns, SolvePositionIK)

trac_ikreq = SolvePositionIKRequest()

(3) Build message (timestamp, frame, position)

hdr = Header(stamp=rospy.Time.now(), frame_id= ’base ’)
poses = {

str(limb): PoseStamped(header=hdr,

pose=Pose(position=pos,

orientation=orient))}

trac_ikreq.pose_stamp.append(poses[limb])

try:

rospy.wait_for_service(ns, 5.0) # (4) Block (name,

timeout)

resp = trac_iksvc(trac_ikreq) # (4) Actual request

implement a dynamic localization to find the position of the person

in front of the robot. Theoretically, it is possible to realize it, due to

the sonar sensor on the robot’s head that can localize humans in front

of the robot to ensure safety with the user (see Section 2.4).

Furthermore, to emphasize Baxter’s interaction, we provide differ-

ent faces for the different states of the robot shown in Chapter 4. Cur-

rently, there is no python interface provided by Rethink Robotics to

publish images to the screen. Therefore, we had to use the standard

publisher-subscriber pattern from ROS (see Section 2.2.2). Basically,Publishing images to

the robot screen we load an image as an OpenCV2 2D array, and convert it into a ROS

message which we then publish to the /robot/xdisplay topic. The screen

sensor subscribes the topic, and therefore finally shows the picture.

Summarized, we can call our function at any time in the program

with a link to a local image to publish it to the robot’s screen. Images

should have a 1024 x 600 resolution to match the screen’s resolution.

´

Finally, the communication between the server and ROS is only

possible because a part of the server also runs as a ROS node (see

Figure 20 - arm_manipulator node). Summarized, due to the server’s

initialization as a node, it is responsible for the communication with

the client, processing data and providing an interface to ROS (see

Figure 20).

2 http://opencv.org/

6.3 tracking client 45

6.3 tracking client

In this section we describe our client program which is connected to

the above elucidated server program. It is also responsible for han-

dling the streaming data from OptiTrack. The tracking client is a C#

program in Unity3D. We created an arbitrary model using a cube

in Unity3D, and enabled the communication/streaming between Op-

tiTrack (Motive) and Unity3D (see Section 5.1). We implemented a

standard C# TCP client following Microsoft’s .NET documentation3.

We encountered two challenges we had with our client program.

• OptiTrack has a high precision, it even recognizes small orienta- Challenges with the

tracking clienttion and position changes, as a result of a barely jittering human

hand. This means we cannot process every rotation or position

changes to the server program.

• Unity3D works with a left-handed Cartesian coordinate system,

but the end-effector pose of the robot kinematic chain is repre-

sented through a right-handed tf.

In the case of the first problem, we decided to provide different

modes. Depending on the complexity of the object, users can decide

whether they want to recognize rotations, positions, or both. For in-

stance, users can enable a setting to recognize one centimeter position

and 45 degree rotation changes, even during run time. It is also pos-

sible to keep one orientation and only use position manipulations or

vice versa. The client listens to the position/orientation update stream

of the object, and triggers the system when the configured alteration

is reached. Subsequently, the system sends a TCP package with the

updates to the Server.

The issue with different coordinate systems shows another advan-

tage of quaternions. Positions are trivial for translating from a left-

handed into a right-handed coordinate system. Suppose we have a ~v

in a left-handed system, and we want the corresponding ~v ′ in a right-

handed system. We can easily achieve it by inverting the z value of

~v.

~v =









x

y

z









≡









x

y

−z









= ~v ′
We can translate rotations between the different systems by using

the uniqueness of quaternions. Therefore, we transform the quater-

nions from Unity3D’s left-handed system into a right-handed tf form.

3 https://docs.microsoft.com/en-us/dotnet/

46 implementation

Generally, quaternions give an independent representation of rota-

tions. However, later in this chapter we will see that we have to con-

vert a quaternion into a rotation matrix (see Section A.1). Hence, we

have to swap axes which basically means negating or reversing the

trihedron of the quaternion. Finally, we can express the same orienta-

tion in a right-handed coordinate system with q = (a,−b,−d,−c).

We also give users the opportunity to either pause the system at the

Manipulator or Tracking Site at any time (see Chapter 4). To achievePausing the system

this, we implemented a signal handler giving the ability to pause the

system anytime. The signal handler can process various inputs e.g.

keyboard, mouse or a pedal. Reproducing the signal leads to continue

the system. It is realized through the logical XOR function, which

pauses the system if anyone presses the required button. However, it

will toggle the current state when both buttons get pressed simulta-

neously. Another possibility to pause the system is to go outside the

marked tracking volume (1m x 1m x 1m space). It also is a function we

implemented to ensure the user’s safety. If the OptiTrack system can

not track the object anymore, it automatically stops sending updates

to our server. Otherwise, it could result in uncontrolled movements

of the robot.

6.4 inverse kinematics & collision avoidance

The last two sections mainly covered the communication between the

components over a network, and processing data to ROS. In this sec-

tion, we elucidate the core of our system called inverse kinematics,

and our approach for avoiding collisions.

Rethink Robotics provides the common Orocos KDL inverse kine-

matics solver for their Baxter robot [53]. KDL uses the kinematic

chain for the calculation which makes it applicable for various robots

through a standard URDF model (see Section 2.2.3). The algorithm

runs on ROS and provides a service to solve the IK problem. Unfor-

tunately, the solving rate and the speed was inappropriate for our

scenario (see Section 6.4). We decided to look for another IK solver,Standard Ik solver

on Baxter and we found a solver called TRAC-IK [4]. This algorithm also uses

the URDF robot kinematic chain representation to solve the IK prob-

lem which means it should run on every robot providing an URDF.

Furthermore, it offers a very similar interface to KDL. In this section,

we introduce the TRAC-IK algorithm on a high abstraction level. We

also show and discuss the performance improvement, and how we

replaced the standard IK solver with the TRAC-IK solver. Finally, we

provide a standardized ROS package for the Baxter robot, whereby

future researchers can easily use TRAC-IK on their Baxter robot and

in the simulator (e.g. Gazebo4) to considerably enhance their robot’s

performance.

4 http://gazebosim.org

6.4 inverse kinematics & collision avoidance 47

Collision avoidance is one of the main research questions in robotics.

It describes the behavior of the robot after it detects a possible colli-

sion with its sensors. It is related to the sensor’s accuracy and inter-

pretation of the environments. It is still an open research question in Collision avoidance

in our system?highly dynamic environments (as is the case with vehicles). In our ap-

proach, we have a static environment consisting of a table, an object

and a robot. Baxter also has specific sensors recognizing two different

kinds of collision called impact and squish. Impact means the robot

hits something (e.g. a table). Squish occurs if the robot exceeds a pre-

defined torque for executing a movement. In our final approach, we

did not use any specific algorithms for collision avoidance, except the

IK solver which is responsible for avoiding collisions of the joints and

Baxter’s standard collision triggers (impact and squish). We did not

do motion planning, where specific collision libraries such as OMPL,

SBPL or CHOMP are required.

TRAC-IK experiment: Patrick Beeson and Barrett Ames who are re-

searchers from Traclabs, introduced the TRAC-IK open-source library

in November, 2015 [4]. It is an alternative algorithm to the KDL solver

which works inefficiently when close to joint limits. TRAC-IK can be

used with various robots such as NASA Robonaut 2 arm, Atlas 2015

arm or the famous robot PR2 developed by Willow Garage, due to

the URDF compatibility. Basically, it uses two IK implementation to

handle the existing issue with joint limits.

"A simple extension to KDL’s Newton-based convergence

algorithm that detects and mitigates local minima due to

joint limits by random jumps. The second is an SQP (Se-

quential Quadratic Programming) nonlinear optimization

approach which uses quasi-Newton methods that better

handle joint limits." [4]

Before we decided to replace the IK solver on Baxter, we wanted to

ensure that it increased the performance of our robot. Our goal was

to maximize the solving rate and minimize the calculation time of

IK requests. Furthermore, KDL uses an iterative approach, where the Issues with current

IK Solveralgorithm terminates when it finds a solution. Otherwise, it runs for

five milliseconds until it terminates. In the previous Section 2.3 we

saw that there often is more than one solution to solve the problem.

Choosing the first possible solution sometimes results in elaborate

movements.

Traclabs offers a ROS package to compare their IK solver to KDL5.

We were able to re-use their code for our Baxter robot. As shown in

the previous sections, we only needed to initialize a ROS node en-

abling the communication to ROS. For calculating the IK, KDL and

TRAC-IK, we need the robot kinematic chain (URDF) which is loaded

5 https://bitbucket.org/traclabs/trac_ik

48 implementation

to the parameter server (see Section 2.2.2). In this approach we only

worked in the Gazebo simulation to avoid any damage to the robot.

We modified the C++ code for our tests, using different configura-

tions to find the optimal settings for our real-time representation of

manipulations with Baxter. TRAC-IK provides the different modes:

Speed, Distance, Manip1 and Manip2.

• Speed: algorithm terminates after it finds the first solution

• Distance: algorithm runs until timeout, return result minimizes

sum of the squared error from seedDifferent TRAC-IK

modes

• Manip1: algorithm runs until timeout, return result maximizes
√

det(J ∗ JT)

• Manip2: algorithm runs until timeout, return result minimizes

cond(J) = |J| ∗ |J−1|

Moreover, it allows the use of an error tolerance for the 3D pose,

which means that it does not have to find the exact solution. We can

also change the timeout value. In the experiment we use the same

amount of samples as Traclabs to test the algorithm on Baxter. ThatSettings for our

experiment means 10,000 randomly generated, but reachable joint configurations

for our robot. They are generated, with the C++ random function be-

tween the possible angles for each joint following the URDF. After

that, the program calculates the forward kinematics, and finally uses

the result for the IK request in the experiment. We ran 10 tests with

different settings, each of them five times in order to get an average

result, due to the random generated joint angles. Table 2 shows the

significant performance improvement of the IK solver with default

settings error = 1e-5, timeout = 1e-3 (same as KDL) and in Speed

mode (see above).

We could increase the success rate up to 99,8% by setting timeout =

1e-2. However, our system is time critical, and therefore increasing the

timeout value was inconsequential. Due to such a high success rate,

we decided to keep the error tolerance = 1e-5 as recommended by Tr-

aclabs. Tests in other modes (see above) sometimes showed more sen-

sible movements in the Gazebo simulation, but the algorithm would

always run until it reached the timeout value.

Alternative: As part of the motion planning environment Open-

RAVE IKFast is another common IK solver provided by Rosen Di-

ankov [9]. It is an analytical approach offering a closed-form solutionIKFast as an

alternative for the IK problem. Following the OpenRAVE website, IKFast can

find IK solutions in about four microseconds. It independently gen-

erates a closed-form C++ code for any robot which provides either a

Collada DAE format or OpenRAVE’s customer XML format instead

of an URDF. Generally, it is possible to convert an URDF into a DAE.

6.5 inverse kinematics package 49

ik-solver success rate avg time

Orocos KDL 62.3% 2.22 ms

TRAC-IK 97.8% 0.81 ms

Table 2: Performance improvement with TRAC-IK

We chose TRAC-IK for two reasons: (1) it provides various configu-

rations, and (2) to provide future researchers with insight about its

effectiveness for Baxter.

6.5 inverse kinematics package

In the last section, we showed why we decided to use TRAC-IK for

our prototype. Here, we want to show how we developed an easy-

to-use TRAC-IK package for Baxter. Our ROS package follows the

standard requirements described in Section 2.2.1. Here, we explain

the development of the ROS package, making the robot more effec-

tive in finding IK solutions. We used a Catkin package structure to

maintain consistency within the ROS community (see Section 2.2.1).

We implemented the code for the ROS node, created the launch file

to run our ROS packages, and modified the CMakeLists.txt as well as

the package.xml. Baxter’s RSDK already provides code for standard

communication over messages and services. Re-using their code pack-

age was possible with for a few modifications.

Alongside the auto-generated code in the package.xml and the

CMakeLists.txt, we had to link the required dependencies and pack-

ages for our program. In order to process data in ROS, we used

the provided message types baxter_core_msgs, sensor_msgs and also

gazebo_msgs due to the Gazebo simulation. We also used the C++ Messages types for

the TRAC-IK

package
template library Eigen, that is required when using the numerical

IK solver TRAC-IK. It is a mathematical library to support linear al-

gebra (e.g. through vectorization), making it significantly faster due

to for example, less vector multiplications. Furthermore, we needed

the kdl_parser, and the TRAC-IK library to compute the IK. To deter-

mine the position of the robot we used tf and tf_conversions as shown

in Section 2.2.4.

Initially, we want to explain the launch file allowing us to basically

run our ROS package in the distributed system. It is a .XML file and

uses ROS commands to provide information for the ROS launch. For

instance, we declare default values for variables in our code such as

default timeout value or the error value epsilon. Additionally, we also Requirements for

launching a ROS

program
load the URDF file to the parameter server, and furthermore launch

the ROS nodes for the right and left robot arm providing the interface

for the communication with the system. For implementing the IK

50 implementation

service, we used the provided code from Rethink robotics in order

to provide the same interface as with the standard IK solver. They

provide a C++ class for processing the standard ROS messages, and a

callback function for the IK services. We modified their C++ code so

that we could use the TRAC-IK algorithm, and distinguish between

the different IK solvers. Finally, we implemented the kinematics.cpp

which is the core of the ROS package we provide.

We used the two standard message types, geometry_msgs and sen-

sor_msgs. The geometry message contains a position and a quater-

nion for our coordinate updates. We decided to use the numerical ap-

proach to solve the IK problem but we also needed the current joint

angles (see Section 2.3). The most common way to read data from

sensors is through sensor_msgs. These are also required to send up-Processing data from

robot sensors dates to the robot sensors such as the joint servos. In the next step, the

system has to calculate the goal position in relation to our /base coordi-

nate system. Therefore, the tf library provides a tf::poseStampedMsgToTF

method to convert geometry_msgs into a tf for further processing (see

Listing 4 (1)). Subsequently, we can use the tf_listener.transformPose to

convert the message into a target frame (see Listing 4 (2)). In last step

before we actually call the IK solver, we have to convert the target tf

into a KDL::Frame, due to the required input for the TRAC-IK algo-

rithm. A KDL::Frame consists of rotation matrix R and a vector ~v to

describe the desired end-effector pose (see Listing 4 (3)). Constructing

the rotation matrix of a given quaternion can be done in constant time

O(1) (see Section A.1). Finally, we call the IK solver which returns ei-

ther a negative integer, if it did not find a solution, or a positive value,

when it terminated successfully (see Listing 4 (4)). We handle errors

in the system with the ROS_ERROR message appearing in the user

console.

6.6 synchronization

In the previous Section 2.2, we introduced the distributed system

ROS, and the mechanisms to overcome the difficulties of such as sys-

tem time stamps or frame id. We wanted to create a real-time system

with various components, and thus we also needed mechanisms to

control the message flow. Additionally, we also show the already ex-

isting standard synchronization methods of the systems. Figure 21

shows a flow diagram to visualize the communication between the

different components in ReMa.

Our Tracking client program captures object manipulations in 30

FPS. However, it depends on the computer’s FPS due to the Update()

function in Unity3D. If there is a significant change of coordinates

(see Section 6.3), it triggers the client program to send a TCP package

including the coordinate updates to the server (see Figure 21 (2.1) and

(3)).

6.6 synchronization 51

Listing 4: Core program IK solver

// (1) Required messages

geometry_msgs::PoseStamped pose_msg_in = pose_stamp;

tf::Stamped<tf::Pose> transform;

tf::Stamped<tf::Pose> transform_base;

tf::poseStampedMsgToTF(pose_msg_in, transform);

...

...

// (2) Convert frame to our base_frame

tf_listener.transformPose(base_frame, transform, transform_base);

...

// (3) Frame consists of a vector and a rotation matrix

KDL::Frame goal_frame;

tf::transformTFToKDL(transform_base, goal_frame);

...

// (4) Call IK solver input & ouput are in KDL format

int valid=ik_solver->CartToJnt(input_position, goal_frame,

output_angles);

The server implements a Requesthandler which handles requests

from the Tracking client program. To ensure that it proceeds with Mechanism to

control server

requests
the latest data, the Requesthandler uses a semaphore to control the

message flow. It acquires the requested coordinates, and furthermore

blocks the input until the resource gets released (see Figure 21 (3.1)).

The server also stores the current position and orientation globally in

our program, providing them for computations. In the next step, the

server calls the IK service in ROS in order to compute the joint angles

for the robot (see Figure 21 (3.2)). Therefore, it needs the current joint

angles, the time stamp, the goal position consisting of a position and

a quaternion, and finally the related frame. The blocking function

wait_for_service calls the service with a timeout of five milliseconds,

allowing ROS to process the required data (see Figure 21 (3.2.1)). At

this point, the system inherently blocks the communication channels

to compute the IK. If the algorithm terminates successfully, the sys-

tem will forward the solution to the actual function to manipulate the

robot arm using the above mentioned message type sensor_msgs (see

Figure 21 (3.2.2.1)). In contrast, if the algorithm does not find a solu-

tion for the IK problem the program releases the resource, and opens

the communication channels for receiving new coordinate updates

(see Figure 21 (3.3)).

However, as we saw in the last two sections, TRAC-IK finds a so-

lution in most cases. To move the end-effector of the robot to the Moving Baxter’s

arm chainrequired position, we can use two different methods, either the block-

ing function move_to_joint_position or the non-blocking solution called

set_to_position, depending on the scenario. The difference between

these functions is simple. The function move_to_joint_position blocks

52 implementation

the system until the arm chain finally reaches the required end-effector

position. It is possible to set a threshold and an accuracy for moving

the robot arm chain. However, to achieve the goal of a real-time sys-

tem, we decided to use the non-blocking function set_to_position to

avoid system delay. The robot will move its arm chain until either

it reaches the goal position or another position is requested. It also

implies that we release the resource directly after the response of the

IK solver. However, in the next section we elucidate our modification

for the study. In the study approach, we use the blocking function as

shown in Figure 21.

6.7 modifications for user studies

In Chapter 4, we designed a system which provides different perspec-

tives, Opposing and Shared, of an object in a remote workspace. In

the next Chapter 7 we will see the limitations of the system, particu-

larly the robot itself.

Since participants would not know the limitations of the robot, and

how to ensure their safety, we modified our system to run HCI stud-

ies. We did not want to give participants the ability to reach theirReasons for

modifying our

prototype
remote collaborator with the robot arm, because they could not see

each other. Therefore, Baxter was not able to enter the remote partic-

ipant’s workspace, because of a safety mechanism we implemented.

Furthermore, we introduced Baxter as a Cobot which basically means

it is developed for working in collocated tasks with humans. There-

fore, for instance, Rethink Robotics’s robot automatically stops when

it hits something e.g. a human arm to ensure safety.

In the first iteration, we were interested in perspective and orien-

tation manipulations and therefore we only passed orientation up-

dates to the server (see Chapter 4). Figure 24 shows the different areas

where Baxter can provide certain orientations. Because of the joint ar-

rangement, some gripper position and orientation combinations are

impossible for Baxter to perform. Rakita et. al. [51] encountered sim-Simplified the

implementation to

overcome robot

limitations

ilar issues when mapping a human hand to a robotic end-effector,

which was ineffective due to humans’s different kinematic capabili-

ties. We used a dictionary to overcome this limitation, where we sim-

plified the implementation in two ways. First, we allow for any pitch,

yaw and roll in a Cartesian coordinate system to be rendered at 0° ,

90°, 180° and 270°. Our implementation relies on a dictionary of end

positions, where for some orientations of the object, the object needs

to be positionally shifted slightly on x, y and/or z axes. While the

data on how the robot should move is sent over a local network with

very low latency, the Baxter requires 2.5 seconds average (minimum:

2.0 seconds, maximum: 3.5 seconds) to physically respond and reach

the correct orientation at the MS. Second, our study implementation

does not allow the Baxter robot to stop mid-way during a reorient-

6.7 modifications for user studies 53

Figure 21: Communication flow between the different system components

54 implementation

ing act, and go to a new orientation. As a result, if the TS rotates

to a position and decides to rotate the object again while ReMa is

still performing the first orientation, the ReMa finishes the first reori-

enting act before beginning the second reorienting act, compounding

interaction latency.

We also changed the TRAC-IK mode to Distance which performed

best for our scenario. Although the algorithm always runs until the

timeout value is reached, the computation time was sufficient. Apart

from the above mentioned modifications, we used the developed sys-

tem described in the sections before.

Particularly, in our first study we provided two different perspec-

tive modes to use our system. In Chapter 4, we designed a system

which provides an Opposing and a Shared perspective. Next, we

want to give a technical background of the different perspective modes.

We did not modify the program itself, the different perspectives couldProviding the

different perspective

modes
be easily achieved through changing the camera positions in the Opti-

Track software. In Section 5.1, we showed the OptiTrack software Mo-

tive, and explained the setup of our motion capture rig. To provide

the different perspective modes Opposing and Shared, we inverted

the OptiTrack virtual camera setup to mirror the tracked orientations.

Thus, the coordinates are sent in an inverted state, and reproduce the

requested orientation on the object accordingly.

In the previous Section 6.2 we explained our realization for head

movements and different faces to embody the current state of Baxter.

For our study, we did not want to distract people with extraordinary

faces. We decided to use a green face if Baxter finished its movementsHead movements

and display changes or it is aligned with the remote object. Otherwise, its screen will turn

yellow to signalize something will happen or is in progress. Further-

more, our robot moves its head towards the object to reinforce the

next movement. Finally, its head moves back to the user’s position

when it is finished.

6.8 summary

Summarized, we implemented ReMa, a system which tracks object

manipulations through humans and reproduces these manipulations

at a remote location with the help of a telepresence robot. To real-

ize this, we developed a server and a client program running on two

different machines. All components work independently and can be

easily exchanged. For instance, we could apply the server/client pro-

gram to a different robot and/or tracking system. The client program

at the Tracking Site receives position updates from six OptiTrack cam-

eras via Motive’s streaming-plugin, and processes data packages to

the remote server at the Manipulator Site. The server program initial-

izes the robot, handles requests and processes data to the IK solver

for moving the robot end-effector to the requested goal position.

6.8 summary 55

As discussed previously, we did not use the standard Orocos KDL

solver for our robot. To significantly improve the robot performance,

we used the TRAC-IK algorithm and developed a package which al-

lows the Baxter robot to use the algorithm. Our ROS package is stan-

dardized, described in Section 2.2.1, and therefore can be used for

future research with Baxter robots. Finally, we also showed its ad-

vantages compared to the standard IK solver and briefly introduced

IKFast as an alternative.

We developed two slightly different programs. The original pro-

gram executes position and orientation updates. Returning to our

HCI research question, where we were interested in how perspective

and orientation matters/is used in remote collaboration on physical

object-related tasks. We modified our program as described in Sec-

tion 6.7. Essentialy, we only passed orientation updates (quaternions)

to the IK solver and used pre-tested positions in order to ensure Bax-

ter could provide the requested position-orientation combination.

7
S Y S T E M E VA L U AT I O N

In this chapter we elucidate and discuss the technical limitations of

our system, as well as limitations of the robot and the tracking system.

We start with the system’s precision, then discuss its usability. Finally,

we show the overall limitations and challenges of the system. This

chapter provides an evaluation of the system we originally created

and also the system with the study modifications. However, most

difficulties and limitations are independent of the system version.

7.1 accuracy & usability

In this section we talk about the preciseness of the system, as well

as the usability. OptiTrack’s tracking of the retro-reflective markers

through infra-red light is very precise. Following the calibration we Accuracy of the

system componentsonly have an average error of 0.82 mm which is negligible for our

project. Also, Baxter’s accuracy plays almost no role, with an average

error of +/- 5 mm following Rethink robotics hardware specifications
1. In the implementation chapter we chose a maximum error of 1*e-5

for IK pose requests (see Section 6.4), which also results in a signifi-

cant low error. Summarized, we do not have issues with accuracy in

our system, due to the sophisticated components we used. Further-

more, we kept the delay in the whole system as low as possible. We

usually measured an average delay of under half a second till the

robot started the movement, even if we consider the network latency

(e.g. through the internet). That means the robot reacts immediately

when changing the position of the object in front of the tracking sys-

tem. However, the Baxter requires 1.2 seconds average (minimum: 0.8 System delay

seconds, maximum: 3.5 seconds) to physically reach the correct ori-

entation at the MS. The system we used for our user study has an

average delay of 2.5 seconds (minimum: 2.0 seconds, maximum: 3.5

seconds), due to the Distance IK mode and the blocking function for

executing requests, this ensured a 100% success rate.

In case of usability it depends on what people expect from the

robot. Baxter does not execute a movement similar to humans. It has

to readjust all joints when it moves its arm chain to another position. Usability of the

ReMa systemIt depends on the goal position and orientation of the end-effector,

and the current state of the joints. Following our implementation, we

use the Speed mode in TRAC-IK which sometimes results in elaborate

movements compared to other TRAC-IK solutions in different modes.

1 http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

57

58 system evaluation

(a) Original position (b) Robot end-effector is aligned

(c) Simple 90 degree clockwise rota-

tion

(d) Robot executes a 270 degree

counter-clockwise rotation

Figure 22: Robot trajectory issues (arrows adapted from photoshop
brusheezy package2)

However, even other modes cannot solve the issue of readjusting all

joints.

When we introduced Baxter in Section 2.4, we also showed its joint

limitations (see Table 2.4). Following the table, we can see that, for

example, Baxter’s wrist can rotate 350 degrees. That means depend-

ing on the current state of the wrist servo, Baxter will not execute a

natural human movement, due its joint limit. Figure 22 illustrates the

issue which appears if we rotate an object. Let us suppose we haveIssues related to the

robot joint limits a right-handed coordinate system and we rotate an object 90 degree

clockwise around the y-axis (horizontal axis - see Figure 22) . In this

case, Baxter executes a simple 90 degree clockwise rotation through a

270 degree counterclockwise rotation, because of its wrist joint limit.

Figure 22 (c) and (d) show that the robot wrist turns in counterclock-

wise direction instead of mimicking the human’s movement in the

clockwise direction. It may seem trivial and unimportant, but it defi-

nitely confused user in both studies (e.g. "Can you rotate the object 90

2 https://www.brusheezy.com/members/aura_id

7.2 limitations 59

degrees to the right" (Group 5 MS - participant), but Baxter will rotate

it 270 degrees to the left). Both result in the same end-effector orien-

tation, but the trajectory from current to goal position is different.

If we consider all joint limitations from (see Table 2.4), it becomes

clear that the robot is not constructed for human-like movements. Fur-

thermore, it also highlights the complexity of the request position for

the IK algorithm. In our tests we explored lots of unexpected large

and extraordinary movements, in particular when we switched from

a end-effector, face-down to a face-up orientation. As we showed be- Elaborate robot

movementsfore it is also a result of the joint limitations of the robot. Here, the

robot has to readjust its whole arm chain. Figure 23 shows the dif-

ferent orientation face-down to face-up. In figure Figure 23 (c) the

movement is executed by a human through a simple tilt of the wrist.

The whole arm of the participants stays in the same position as in Fig-

ure 23 (a). However, as visible in Figure 23 (d) the robot has to adjust

its entire arm chain resulting in an unexpected bigger movement.

Baxter is mainly developed for packing tasks such as grasping an

object and placing it in a box3. In these cases its joint limits and capa-

bilities are sufficient.

7.2 limitations

In this section we talk about the technical limitations of our system,

in particular the Baxter robot. We have already seen issues related to

the joint limitations of the robot. In this section we dive further into

the robots capabilities.

As we briefly mentioned in the Chapter 6 Baxter cannot provide

every rotation at a position. In the previous Section 7.1, we saw that

its movements are often elaborate, due to the joint limitations. How-

ever, many rotations are often physically not reachable for the robot

due to its joint arrangement. At the beginning of our research, we Arrangement of

robot joints led to

system limitation
expected that it is a problem of the IK algorithm and following the

previous Section 6.4 we were able to significantly improve the perfor-

mance. However, we encountered another issue with the robot itself.

For Baxter, some gripper position and orientation combinations are

impossible to perform. Figure 24 shows the different areas in green,

where Baxter can provide basic rotations face-up (a), face-down (b)

and face-left (c), face-right (d).

There are many orientations in between these basic orientations,

but for illustration purposes, it is sufficient to provide only the above

mentioned orientations. The main reason why Baxter cannot provide

all orientations at a position is the arrangement of its joints, and the

above elucidated joint servo limits. As we can see in Figure 24 (c) (d),

the green marked area shows where Baxter can provide the rotation

face-left and face-right. This is only a 2D image and does not con-

3 http://www.rethinkrobotics.com/baxter/

60 system evaluation

(a) Face-down orientation human arm (b) Face-down orientation robot arm

chain

(c) Face-up orientation human arm (d) Face-up orientation robot arm

chain

Figure 23: Re-adjust robot arm chain

sider depth. However, even from this limited perspective, it is clearly

visible that the end-effector position, where Baxter can reach the ori-

entations face-left and face-right are only overlaying in a very small

region. Figure 24 (a) (b) also shows the orientation face-up and face-

down which illustrates the same issue. Baxter is constructed for ex-

ecuting specific tasks such as packing (see Section 2.4). Hence, the

robot capabilities in relation to the tasks it typically performs are ap-

propriate. For a packing tasks such as grasping an object and placing

it into a box, Baxter mostly needs the orientation face-down which

it provides almost in the entire workspace (see Figure 24 (b)). Con-

sidering all possible orientations in 3D space shows how limited our

prototype eventually is. Therefore, we decided to use the dictionary

implementation ensure that users are not faced with these issues (see

Section 6.7).

Another question which arose was how can we determine if a move-

ment is finished or not. We send coordinate updates to our server pro-

gram triggered by position and orientation changes. However, it is a

7.2 limitations 61

(a) Faceup orientation (b) Facedown orientation

(c) Faceleft orientation (d) Faceright orientation

Figure 24: Robot end-effector position-orientation combinations: The figures
show the different areas where Baxter can provide end-effector
position and orientation combinations in 2D space (green)

fixed value and often people were in the middle of a movement when

the robot updates its position. Using a time threshold does not solve

the problem, because it is still unclear how long a movement will take.

We also considered a signal executed by users in order to tell the sys-

tem when a movement is finished. This seemed very unnatural to us,

so we decided against it. Furthermore, depending on the function we

use to call the IK service, it either results in staccato or smooth move-

ments. The move_to_joint_position service function blocks all commu-

nication channels to ROS which means it will execute the movement

without interruptions. As shown before each IK call will result a de-

lay of the whole system, but movements will be smoother. Neverthe-

less, we still have the problem of not knowing when a movement

is finished in order to send updates to the server program. Another

approach is to use the set_to_position position function which does

not block the system. Thus, there is no extra delay in the system.

However, while executing a movement, the robot gets many position

updates resulting in staccato movements. We could not find a solu-

tion for entirely eliminating the problem. The set_to_position function

62 system evaluation

does not have this delay and therefore we chose this approach. We

tried to overcome the staccato movements by using a fast determin-

istic greedy path smoothing algorithm. However, we still needed the

trajectory before we actually could use the algorithm. This took us

into recent autonomous vehicles research about real-time motion/-

path planning considering dynamic environments which is beyond

the scope of our work.

Another limitation of the system is the tracking system. Using retro-

reflective markers has a simple disadvantage. If someone covers the

markers (e.g. with his/her hands), the tracking does not work any-

more. We tried many different marker setups, to ensure that we al-Limitations of an

OptiTrack system ways have enough visible markers for the cameras to determine the

position (at least three). However, we could only predict how par-

ticipants would hold the object. In our user study we also explored

other issues with the tracking. Some participants wore watches, rings

and/or glasses. All of these items interfere with the infra-red cam-

eras which sometimes resulted in errors. However, even with the

above mentioned problems with the tracking, in most cases the sys-

tem worked as expected. Using an asymmetric marker setup also

made the tracking more resistant and stable against interference, er-

rors and covered markers.

8
U S E R S T U D I E S

Figure 25: ReMa study setup: The system detects manipulations on an ob-
ject (Left-yellow) using a set of sensors (Left-red), and then re-
produces these with a proxy object (Right-yellow) using a Baxter
robot arm (Right-red). ReMa allows shows the Manipulator Site
collaborator (Right) the object with the same orientation as at the
Tracking Site (Left). Collaborators can optional use video chat
(blue) depending on the condition

Following Chapter 3 and Chapter 4 we designed two studies to

evaluate and understand how people would make use of rotation

and perspective information in collaborative matching tasks. In both ReMa study setup

studies, both the Tracking Site (TS) and Manipulator Site (MS) partici-

pants had their own physical proxy (of the other participant’s object).

For our studies we decided to move our whole setup to another loca-

tion where we were able to observe the behavior of the participants.

It was also easier to administrate our various components and assist-

ing participants during the study if questions arose. Therefore, both

persons were in the same room but they could not see one another

(back-to-back). We also switched to a local network solution to avoid

any issues due to the internet connection. In the following results and

findings sections for both studies, we use a vignette approach where

we: first, give a concrete example from our study and subsequently,

we explain our conclusion based on these observations.

8.1 design study 1 - the impact of perspective

In Study 1, we focused on how different perspectives of a proxy object

affects a pair’s collaborative interactions and conversation.

63

64 user studies

Figure 26: Study 1: VC study setup "Opposing" (top) and "Shared" (bottom)

Study Variables: Our central interest was in comparing an Shared

perspective, where participants share the same view of an object (see

Figure 27 (bottom)), with the Opposing perspective offered by con-

ventional video chat systems (see Figure 27 (top)). We implemented

these two perspectives in two technical settings, allowing us to com-

pare videochat (VC) interactions (see Figure 26) with the ReMa sys-

tem. As illustrated in (see Figure 27), we used a 2x2 within-subjects

design (Opposing vs Shared, and VC vs. ReMa), where each pair

experienced all four conditions once (each with a different task objec-

t/arrangement of stickers).

Task design: We were looking for a task where participants have to

explore an object with the use of our system. We chose an alteration

of an observation task, in order to have the ability to slightly control

the communication flow. Basically, we used a sticker task where par-

ticipants had to communicate the right position, colour, value, andDifferent objects for

our user stuy orientation of the stickers attached to an object given by us (see Fig-

ure 28 (2) and (3)). We bought two different objects, a bird house

Figure 27: Study 1: Compared the different perspectives Shared vs. Oppos-
ing using our ReMa system and a common video chat tool

8.1 design study 1 - the impact of perspective 65

Figure 28: Study 1 objects: Trophy and Bird house

and a trophy. We decided to use these objects due to the different

shapes and the various possibilities to attach stickers (e.g. inside the

trophy). We prepared the two study objects differently. The object for

the Baxter robot needs to be tangible by the robot (i.e. its gripper). We

tested many possibilities such as tape, but in most cases the gripper

did not have enough grip to hold the object in a fix position during

a movement of the robotic arm. Finally, we used two by two lumber

which we notched on the sides to improve the grip (see Figure 28

(4)). This approach was sufficient for both objects. For attaching the

lumber to the bird house we used wood glue, and for the trophy

hot glue. For capturing motions of an 3D object we had to use retro-

reflective markers (see Figure 28 (1)). We used hot glue to attach the

reflective markers to our study object, and we also prepared backup

objects for our study. All in all, we prepared 8 objects for our study.

We could easily attach the stickers to the trophies and bird houses.

We chose two different sticker setups for trophy and bird house. The

place of the stickers where always same during the entire study. We

only constrained that we did not run e.g. two bird houses successive

to minimize the learning effect.

Before we ran our actual study, we conducted four pilot studies in

our lab. Following that, we changed the position of participants in Finding from our

pilot studiesfront of Baxter. Sitting in front of the robot felt intimidating due to

its size and appearance. However, as our participants stood in front

of Baxter they felt more comfortable and therefore in the actual study

one person was sitting in front of the motion capture rig and the

second one stood in front of the robot.

Participants: We recruited 16 participants (eight pairs; six females;

ten males), aged 19-54 with a range of backgrounds including elec-

trical, mechanical and software engineering, computer science, art

history and sports science. Each participant was provided with $20

66 user studies

remuneration for their participation. All participants reported experi-

ence with video chat software tools like FaceTime or Skype.

Data collection: We collected data from six sources: a pre-study ques-

tionnaire for demographic information; video of participants as they

completed tasks; video feeds of participants during video chat (VC)

conditions; ReMa’s internal logging (e.g. numbers of rotations; which

orientation to which orientation; timing, etc.); field notes and obser-

vations; and a post-study interview eliciting participants’ experiences

with the system. For recording the video material we used two Mi-

crosoft full hd cinema lifecams at the Tracking Site for a face and an

over the shoulder perspective to capture participants’ behaviours and

actions. Another cam recorded a side view at the Manipulator Side to

provide video material of the participant’s interactions with the object

and the robot. For the VC variation we used two laptops, a Samsung

Ultrabook Serie 9 and a Microsoft Surface Pro 3 to record the laptop

facecam. For recording the voice communication and the interviews

we used Yeti USB microphones from Blue. We ran 8 groups of partici-

pants which resulted in over 40 hours of video material we analyzed.

Study process: Here, we describe our study process in the actual

study. We introduced our team and explained the consent process

for studies at the University of Calgary. After that, we showed par-

ticipants the study location, the system and explained the study task.

To get familiar with the system, participants performed a warm-up

task with a third object (network card). Both participants had the

chance to explore the system before the actual study. Subsequently,

they performed the different trials (see Figure 27). We either started

with the ReMa system or the VC condition, due to the counterbalance

approach of our study. They performed the two variations Shared and

Opposing perspectives with different objects in each system. We did

not use the same object in two successive tasks, and we also flipped

participants in the Baxter conditions after they finished a trial. At the

end of our study we gave both participants a questionnaire and we

had a short interview to better understand their experience. Our ques-

tionnaire can be found in Section A.3, but essentially we asked them

about their background and previous experience with video confer-

encing tools such as Skype or Google Hangouts. In the second part

of the questionnaire we asked them to rate the different variation re-

lated to questions given by us (see Section A.3). After that, we used

key questions to start a discussion (see Section A.3). Besides, these

questions the interview was very open, and we encouraged partici-

pants to tell us their opinions and thoughts about the system, as well

as suggestions to improve it.

Analysis: We conducted a thematic analysis of our data, identifying

recurring themes in participant behaviour as they engaged with the

8.2 results & findings study 1 67

condition avg time variance

Opposing-ReMa 6m29s 2m10s

Opposing-VC 5m19s 1m33s

Shared-ReMa 4m40s 1m52s

Shared-VC 3m24s 1m22s

Table 3: Study 1: Task completion times

system, and correlating these with participant’s responses in the data

collected from the interviews. In addition, we conducted a modified

interaction analysis (Jordan & Henderson [26]), where we identified

unusual incidents, and used these as points for further understanding

of how participants worked with one another. We also used commu-

nication flow diagrams to analyze the differences in communication

during the trials.

8.2 results & findings study 1

All participant pairs completed the tasks in the different trials. Gener-

ally, Shared perspective trials were better than Opposing perspective

trials in terms of completion time. Average completion times for each

condition were as follows Table 3.

Pairs were more efficient using the Shared perspective rather than

Opposing, regardless of the tool. While we were generally not inter-

ested in comparing task completion times between the VC and ReMa

conditions (recall that ReMa introduces substantial latency due to the

physicality of the robot), we still observe that one of the ReMa condi-

tions is faster than one of the VC conditions.

The utility of the Shared perspective is corroborated by data from

the questionnaire. On a 10-point Likert scale response to the question, Ratings from our

participants"Which of these would you prefer to use next time (1-definitely; 10-definitely

not)", participants overwhelmingly chose the Shared perspective op-

tions (median scores: Shared-ReMa (1.5), Shared-VC (2), Opposing-

VC (4.5), Opposing-ReMa (5)). Responses followed a similar pattern

for participant’s rating on ease of use (median scores: Shared-VC (1),

Shared-ReMa (2), Opposing-VC (4), Opposing-ReMa (5)). Based on

our analysis of participants’ behaviour, we observed two principal

challenges participants face in Opposing perspective trials that they

did not have in Shared perspective trials: first, the Opposing view

conditions meant that a participant could not show his/her partner

and see for him/herself what was being discussed, and second, in

Opposing-VC conditions, partners had a hard time knowing how to

"follow along" because of the perspective problem. With the Shared

68 user studies

Figure 29: Group 3 Opposing-VC: Frank (A) tries to explain what he sees
on one side of the trophy, but Joe rotates his trophy in the wrong
direction (B). Frank explains the orientation of his trophy to Joe
(C), but Joe is still confused whether he is holding his trophy in
the correct orientation (D)

perspective conditions, participants used different strategies made

available to them because they knew what the other person saw.

We observed that generally, participants had difficulty organizing

and coordinating activity with an Opposing perspective because they

had difficulty understanding what the other participant could see. InOverall observations

from study 1 both VC and ReMa trials, we observed participants turning an ob-

ject, and pausing the turn to check if the partner could see what was

expected. This problem was exacerbated in VC trials, where both par-

ticipants could turn an object in whatever way they wanted. When

they tried to synchronize movement, even a simple misstep was diffi-

cult to recover from. This seems to be a symptom of the problem that

others have observed [12, 21, 60], where people have difficulty men-

tally rotating the object and understanding the object from another

person’s perspective. This problem is well illustrated by the difficul-

ties experienced by G3, where one Frank’s re-orienting manipulations

on the object are difficult for Joe to copy onto his own object.

Vignette 1: Group 3, Opposing-VC. Frank orients the object for Joe so

that Joe can see the right orientation of the trophy for his sticker (A). Joe

tries to align his trophy with Frank’s trophy by using the VC preview (B).

Joe is uncertain if this is the right orientation of the trophy. Frank and Joe

8.2 results & findings study 1 69

Figure 30: Group 1 Opposing-VC. Brenda wants to show Alan a sticker in-
side the trophy (B), but Alan cannot see the sticker (A). Alan tells
Brenda to orient the trophy that both shared the same perspective
(C, D)

try to determine whether they share the same view or not. "The flat part of

the trophy is facing you" (C). Ultimately, Joe re-orients his trophy, but is

still confused about this orientation: "This feels really weird cause this isn’t

the side I’m looking at" (D). Issues with

mirroring effectProblem of Left-Right: Vignette 1 shows difficulties in the Opposing-

VC particularly with a mirroring effect. Joe uses the video to align

his trophy with Frank’s trophy. However, he gets confused, as he is

observing three different views of the object: Frank’s, his own phys-

ical object, and the preview in the video chat. Joe is uncertain how

or whether indeed he should be matching Frank’s view, and in what

way: should he rotate left or right, counter-clockwise or clockwise;

should he be showing Frank what he is looking at, or should he be

doing the same operations so he is looking at the same thing Frank

is? Trying to use VC to reach a shared orientation was challenging

for most participants, as the perspective draws one’s attention away

from one’s own object. Thus, rotational manipulations on the remote

object were difficult to reproduce for most participants.

Seeing and Showing at the Same Time: Vignette 2 from G1’s Opposing-

VC trial (see Figure 30) illustrates how the Opposing perspective re-

sults in challenges with both, showing part of the object and describ-

70 user studies

ing it. Here, the problem is further exacerbated by the use of video

on a flat 2D display.

Vignette 2: Group 1, Opposing-VC. Brenda shows Alan the inside of the

trophy so he can see where to put a sticker (B). Alan is unable to understand

from the video which sticker Brenda is referring to, or the orientation of the

trophy (A). Brenda tells Alan to reorient the trophy so that they share the

same perspective (C,D), but she has a hard time simultaneously showing

Alan the inside of the trophy and describing it. She leans forward to look

inside her trophy to describe what Alan should be seeing. After struggling

to do this, Alan tells Brenda to reorient her trophy to match his perspective

on his trophy: "No. Look at. . . Look inside like I’m looking inside."

This vignette illustrates that when Brenda is trying to show Alan

something in the video, she has difficulty describing it to Alan (which

requires her to see it) and showing it to him at the same time. When

she points the object towards Alan, she can no longer see it (and is

thus relying on memory). On the other hand, when she looks at it

to describe to Alan, he can no longer see what she is talking about.

As Alan struggles to map his view of Brenda’s changing object to

his own view of his own object, he realizes that ultimately the video

does more harm than good. They later resort to using verbal descrip-

tions of how to rotate the object into the right orientation. Beyond

this, we observe that the camera capture itself is problematic: when

Brenda tries to show Alan the inside of the trophy, she holds it too

close to the camera such that Alan cannot understand the trophy’s

orientation, which means he cannot extract contextual 3D spatial in-

formation from the 2D video.

Pause Workaround: Groups experienced similar orientation confu-

sion in the Opposing-ReMa condition; however, five of eight groups

developed a clever workaround by re-purposing the "pause" func-

tionality (originally designed to allow participants to examine their

objects independently) to create a Shared perspective on the object.

In Group 8, TS participant describes this idea:Using pause

functionality to

create a shared

perspective

Vignette 3: Group 8, Opposing-ReMa. Ava (TS) shows the trophy so that

Mia (MS) can see the right side. Ava then pauses the system and orients

the trophy for herself that both can look at the same side of the trophy. "So

I pause it, then I turn it so I can see the same side," Ava explains. "Ooooh,

smart!" replies Mia.

"Reset" Strategy Given a Shared Perspective: The participants gener-

ally worked very well in the Shared perspective trials. With Shared-

VC, most teams readily identified a "start" position/orientation that

they used for the rest of the task. Here, after successfully affixing each

sticker, they would revert their own respective objects to the "start"

orientation to begin again. In the following vignette, one participant

works with the other to establish what the "start" orientation will be.

8.2 results & findings study 1 71

Vignette 4: Group 2, Shared-VC. At the beginning of the task, Nancy

holds the trophy right-side up, "If you look at the bottom of the trophy, there

is a flat side." Ned looks at the wrong side, so he rotates his trophy to find

the flat side. To confirm and establish this position, Nancy says to Ned, "Put

the flat side in front of you [and] let’s call that original position."

This strategy allowed participants to easily revert to a "known state"

if they got into a confusing situation that was difficult to recover from.

Shared-ReMa Prevents Exploration: The mental model provided by

ReMa in the Shared perspective was straightforward for participants

to understand. The automatic reorientation meant that participants

did not need to describe re-orientation actions (and potentially have

them misinterpreted or reproduced incorrectly), as in the VC condi-

tions. Yet, the tradeoff was that TS participants could not look explore

the object, to understand it, or to look ahead at next steps properly

without affecting their partner. This problem is illustrated in the fol-

lowing vignette: ReMa prevented

participants from

exploring the object
Vignette 5: Group 6, Shared-ReMa. Jon (TS) tells Emi (MS) where to put

the sticker, "It’s a 25 cent yellow sticker upside-down." Emi begins to attach

the sticker, but pauses and asks about a nearby sticker (which could act as

a landmark): "Actually, do you see the two. . . ?" Jon twists the bird house

to check if there’s a sticker left, which startles Emi, who was about to put

a sticker down. "What!? Stop, Jon!" Jon sheepishly returns the birdhouse

to his original position, "Oops, sorry, I forgot. . . I am controlling the robot

arm."

Thus, TS participants would need to hold the object in place while

Manipulator Site participants worked, and could not "look ahead" at

other parts of the object without affecting their partner’s activities.

ReMa Conditions - Slow confirmation: Participants appreciated that

ReMa’s automatic reorientation meant they shared the same perspec-

tive each time the object was reoriented. This reduced the number of

interpretation errors between participants: "I could just assume that we

are looking at the same side of the trophy" (G8-P15). However, when using

ReMa, the Tracking Site participants did not know when Manipulator

Site had finished re-orienting the object for the other participant, and

when/whether the MS participant had completed an action/instruc-

tion step on their own object. This is illustrated by Group 5, where

the MS participant slows the interaction down by asking several con-

firmatory questions of his partner to ensure both are looking at the

same thing: Difficulties as a

result of the system

delay and no visual

feedback from the

remote site

Vignette 6: Group 5, Opposing-ReMa. Harry (MS) looks at the bird house

ReMa has oriented for him. He starts talking about an empty sticker he sees

on the left side of the bird house. Ben (TS) is craning his neck to look at

the same side of the bird house, because he does not want to move the object,

but he cannot see the sticker: "Empty sticker? There is no empty sticker in

front..." (Ben). Harry wants to confirm that they share the same perspective:

72 user studies

"I just want make sure we are looking on the same side. Is there a little desk

in front of the house?"

This type of confirmatory behaviour was common across all pairs,

because neither participant had a strong understanding of what the

partner could see. To overcome this problem, pairs would frequently

resort to slowing down the interaction, and then ask questions about

what the other participant could see, or what they were doing.

In summary, this study shows that the Shared perspective was far

more straightforward for participants to adopt. Pairs developed inter-Summary of study 1

action strategies around this perspective to allow them to complete

the task efficiently. In contrast, the Opposing perspective, which is

how conventional video chat tools are oriented, caused problems for

participants: they had a hard time distinguishing between left-right

rotations, and could not see and show aspects of the object at the same

time. At the same time, the study raised several questions about the

role of ReMa, leading us to design the second study.

8.3 design study 2 - role of physical proxy

Our second study focused on how the presence of or lack of proxy

changes collaborative behaviour. Specifically, how is a physical proxyFocus of the second

user study used in the presence of a video channel? We are interested here in

situations where both the video chat channel is available alongside a

system like ReMa, which can manipulate a physical proxy to mimic

actions on another object. What role does each of these channels play in

supporting the collaboration?

Study Variables: As in Figure 31, the second study had three condi-

tions: a video-only condition (VC-Only), a physical proxy-only con-

dition (ReMa-Only), and a combined condition with both video and

a physical proxy (VC+ReMa). Based on the findings from our first

study, all conditions used a Shared perspective. Participant pairs expe-

rienced all three conditions. The video-only and physical proxy-only

conditions were presented either first or second (counter-balanced

across pairs); the combined condition was always presented last.

Figure 31: Study 2: Compared Shared video chat, ReMa and a combination
of both

8.3 design study 2 - role of physical proxy 73

Participants: We recruited 16 participants (eight pairs; nine females,

seven males), aged 18-29 with backgrounds including computer sci-

ence, actuarial math, animal and medical science, arts, linguistics, and

electrical and chemical engineering. No participants from Study 1

were permitted to participate in Study 2. For participating in study

each person received $20 CAD remuneration.

Task Design: For our second study, we modified the task objects to

consider scenarios where object details are more subtle and perhaps

more difficult to identify over video alone. In real world scenarios it is

not always possible to see orientation, context, complexity, or detail of

real-world artefacts (e.g. subtle material cues in design critique [42],

larger-scale physical tasks [49]). We were aiming for a study which Task modifications

in order to match

real world scenarios
simulates it. Therefore, we reduced the size of the stickers with the

information. On the stickers were different letters we chose by going

through the alphabet and eliminated letters that were (a) ambiguous

to differentiate between (e.g. W/M) or (b) too symmetrical (e.g. O,

X). We aimed for letters that would have a very clear orientation and

did not have two "right" answers as to what they could be. Finally,

we used the capital letters A - B - G - K - L - R - Y. We reused the

plain stickers from the first study, where participants had to write the

solution letter with a pen. Both participant’s objects have stickers in

the same locations. The content of these stickers differ between the

participants. Some have a letter written on it, in different orientations.

Others are blank, which corresponds to a sticker with a letter on the

collaborator’s object. Both participants had blank markers on their

objects; this meant that both participants needed to exchange knowl-

edge to write letters on their own object’s blank markers, such that

the objects match at the end of the task. In each study the stickers are

at the exact same position on the object. The two bird houses had dif-

ferent sticker setups to minimize the learning effect. We did not flip

participants between tasks, in order to get stronger opinions about

the different roles. We deactivated the different screen images and

the head movements following our observations and interviews from

our first study. We decided to not experiment with different faces to

avoid distraction. We revised our study tasks to highlight specific is-

sues with physical proxies. In Study 1 we observed that participants

could glean considerable information from the video, not only includ-

ing object orientation, but also specific marker details (e.g. colour and

content).

Data Collection and Analysis: We followed the same data collection

and analysis approach as in Study 1.

Study process: We followed the same study process as in Study 1,

but with the new study variables (see Figure 31).

74 user studies

G1 G2 G3 G4 G5 G6 G8
0

0.5

1

P
ro

p
o

rt
io

n
o

f
ti

m
e

ReMa VC

Figure 32: Proportion of time MS participants focused on ReMa (blue) vs.
video chat (red) (G7 video data lost)

We also conducted pilot studies before we ran the actual study. We

explored having the laptop on the table is insufficient for the com-

bined variation. The laptop position was too far away from the physi-

cal object, thus we re-positioned the laptop as close as possible to the

robotic arm.

8.4 results & findings study 2

We focus our analysis on the VC+ReMa trials, where participants had

access to both VC and the physical proxy. Based on our analysis, we

find that the physical proxy obviated the problems participants have

in describing, interpreting and carrying out reorientation acts on the

proxy object, while video chat helped participants understand what

has happened to the remote proxy object, and gesture. To illustrate

this differential use of the video chat and the proxy object, we contrast

VC+ReMa against the VC-only and ReMa-only conditions.

Distinct Roles for VC and ReMa: From a video analysis of the VC+ReMa

trials, we collected data on how MS participants used each channel.

Figure 32 illustrates the proportion of time the MS participants fo-

cused their visual attention on ReMa compared to the video chat.

Between video chat and ReMa, MS participants disproportionately

spent their visual attention on the ReMa-manipulated proxy object.

Our analysis of the VC+ReMa condition shows that the proxy ob-

ject was used as a shared workspace (e.g. for the MS to understand

in what orientation the object ought to be, or what to do), whereas

the video was used for confirming that actions/steps had been taken

(e.g. MS ensuring that the TS’s object had been rotated to the correct

orientation), and for gestures. The following vignette, from Group 2,

typifies the VC+ReMa experience of seven of our eight groups:

Vignette 7: Group 2, VC+ReMa. Susan (TS) rotates her object, telling

Larry (MS), "I’m gonna turn it". The robot rotates the object and Susan

8.4 results & findings study 2 75

Figure 33: VC+ReMa – Group 2. Larry (MS) points at the trophy confirming
the sticker position, knowing that Susan (TS) can see the gesture
through the video

says: "It’s gonna take a sec." While the robot is rotating Larry’s object, Su-

san watches the robot through the video chat. All the while, Larry is watching

the robot and the object carefully. Once the robot completed the reorientation,

Susan says "So. . . YES, at the back of the trophy there is a G." Larry, know-

ing Susan can see him in the VC, points at the sticker to confirm the sticker

(see Figure 33). Finally, he peeks at the VC to confirm the orientation of the

trophy before writing the letter. Using the video

channel for

confirmation
This vignette highlights three aspects of the interaction as it re-

lates to the different channels. First, Larry’s primary interest is on his

immediate workspace: the proxy object, held by ReMa. Most of his

visual attention is here — he waits for the proxy object to settle into

position, and once its position is stable he writes on the project object.

Second, Larry generally does not use video chat, with the exception of

understanding Susan’s gestures and ensuring that his object roughly

matches Susan’s. Similarly, Susan’s primary use of the video chat is

to watch as Larry’s object rotates into place — she uses the video to

confirm that ReMa has executed her rotation act properly. Ultimately,

Susan waits for visual confirmation that Larry has completed the task

before she moves onto the next marker. Thus, the video and proxy ob-

ject each play distinct roles in supporting the interaction; we see this

in the absence of one channel during the VC-only and ReMa-only

trials.

While seven out of eight pairs used video in this way, G8 was an

outlier. The MS participant used the video instead of the robot as a

primary visual reference for solving the task. The pair communicated

almost strictly via video chat, the MS determining the position and

solution letter for blank stickers, going to the robot with the object

ready in the right orientation, and finally writing the letter on the

marker.

76 user studies

Figure 34: VC+ReMa – Group 1. Clara (TS) uses spatial hand gesture to
describe the movement Lina (MS) should execute (annotated for
clarity)

Using Gestures to Communicate Re-Orientation Acts: As in Study 1,

the MS participants were severely disadvantaged in communicating

back to the TS participant. The MS participant could not physically

manipulate their own object. Thus, to communicate how an objectReMa-only does not

support gestures ought to be rotated, MS participants frequently used hand gestures

to rotate an imaginary object in midair, providing a verbal descrip-

tion alongside the gesture. The TS participants could only rely on

the video chat channel to understand what was intended by MS’s

description. TS then rotated the object as they interpreted the instruc-

tions, and MS confirmed based on the rotation of the physical proxy

in front of them.

Vignette 8: Group 1, VC+ReMa. Clara (TS) wants to describe the right

orientation of the object for Lina (MS). First, she describes the position of

the sticker: "In the left bottom corner" Lina confirms and asks: "Yes, bottom

left. . . what should I do?" Clara is uncertain how to describe the movement:

"Just move it. . . left. . . 90 degrees to the left". She uses hand movements to

show how Lina should move the object (see Figure 34). While Clara explains

and gestures the movement Lina is watching the video chat to better under-

stand Clara’s gestures.

VC-Only Trials: Compared with the VC+ReMa trials, the pairs’ main

challenge was to effectively describe re-orientation actions to their

partner, or to interpret those instructions (and carry them out prop-VC-only findings

erly). While they could use the video chat to observe the remote site,

and interrupt when problems occurred, the presence of the video chat

did not prevent these mistakes from happening.

Dialogue from these trials were fragmented: Participants used step-by-

step language to describe their actions and stay aligned with the

remote person. As a participant provided instructions, s/he would

watch the video chat to see if/whether the instructions had been

8.4 results & findings study 2 77

understood, repairing the interaction as necessary. In one instance,

participant [G1-P2] needed three tries before he is satisfied with the

outcome: "And don’t move the house...in this position there is. . . Wait, just

move the house 90 degrees to the left" In another example, the participant

[G5-P10] realizes that the instruction he just gave is ambiguous, and

tries to repair it twice, all while watching his remote partner struggle:

"Just rotate it. . . That means you just keep the tip of the house at the table

and the base of the house upwards... facing the roof."

Because participants could see each other’s object in the video chat,

they could catch errors quickly; however, this interaction was far from

smooth. Just as in Study 1, many pairs defined a "start" position at the

beginning of the task to avoid orientation confusion, and returned to

this position when their objects became misaligned. In contrast, the

VC+ReMa trials were smoother: TS participants did not need to ver-

bally convey reorientation actions to their MS, resulting in dialogue

that was much clearer and focused on the markers themselves. Con-

firmation that the proxy object had moved correctly, or that MS par-

ticipant had completed the action correctly relied on the video chat

channel.

ReMa-Only Trials: Due to the absence of a video chat channel, par-

ticipants needed to communicate verbally or through the orientation

of the proxy object (via ReMa). This presented challenges for both the ReMa-only findings

TS and MS, but in different situations. As in Study 1, the TS relied on

verbally confirming with the MS about whether the ReMa had fin-

ished its movements, and whether the MS participant had finished

his/her actions (i.e. writing the symbol on the sticker). We observed

participants regularly and explicitly asking for verbal confirmation

(e.g. "Are you ready?" [G1-TS] or "You got it?" [G3-TS]), because they

had no other way to know the current state at the remote site. Where

the video chat acted as a feedback mechanism in the VC+ReMa con-

ditions, its absence in VC-only conditions markedly increased verbal

confirmation cues.

Because the MS participant could not manipulate the TS partici-

pant’s workspace, s/he described re-orientation steps for the TS ob-

ject verbally (as in Vignette 8). Interestingly, MS participants still used

spatial hand gestures to describe rotations (as in the VC+ReMa con-

dition); of course, these hand gestures were not visible to the TS

participant, and MS participants confirmed they were aware that TS

participants could not see actions in a video stream. Instead, these

"rehearsal" acts seemed let participants explain actions from a first-

person perspective.

All TS participants oriented the proxy object such that the correct

side of the object faced the participant, and that side was oriented

such that the MS participant could easily write the letter "right side

up." This contrasts with Study 1, where only two groups oriented the

object such that the markers were placed "right side up"; most groups

78 user studies

in Study 1 kept the object oriented "right side up", even if that meant

the MS needed to affix the sticker on upside down. We suspect that

the revised task and markers influenced this change — in Study 2,

the MS had to write a symbol, whereas in Study 1, MS only needed

to affix the sticker.

No Pausing Necessary: As in Study 1, we provided a pause func-

tionality; however, no groups used this function in any trial. Given

that the bulk of its use in Study 1 was during Opposing perspective

conditions to mimic a Shared perspective, this is lack of use is per-

haps unsurprising since Study 2 only used the Shared perspective.

No participants complained about the use of a Shared perspective,

and found it very straightforward and easy to use: "You can just look

at it and you see whatever the other one is seeing. . . " [G7-P14] or "It is

easier to understand what the other person is really looking at" [G8-P16].

In summary, study 2 focuses on how people use video chat andSummary of the

second study ReMa differently given the presence of both channels. ReMa was used

primarily for orienting the shared workspace. Meanwhile, the video

chat let people visually confirm what happened to the proxy object,

and offered a means to gesture at the proxy object.

9
D I S C U S S I O N & F U T U R E W O R K

In this chapter we discuss our results of the technical evaluation as

well as the user studies, and we provide implication for future work.

We start with the technical discussion and future work.

Elaborate executed robot movements: In Chapter 7 we argued why of-

ten robot movements are "unnatural" and bigger than excepted. In

addition to that, it is also a result of the inverse kinematics prob-

lem and the fact that we tracked the position and orientation of the

object. Similar projects tracked the arm/hand position and mapped

human wrist, elbow joints to the robot joints. However, our focus Discussing our

alternative approach

of mapping object

orientation to a

robot end-effector

was on the object and because previous technial projects addressed

hand/arm tracking with technologies such as Microsoft Kinect1, Leap

Motion2 or Myo wristbands3 we wanted to explore additional ways.

Furthermore, grasping/holding/manipulating of objects is challeng-

ing when tracking the hands, because Baxter does not have a "hand

(gripper)" similar to humans and has different kinematics and speed

capabilities [51]. We also observed that people played with the object

(i.e. manipulated it with both hands), which was not a problem with

our system, but is difficult to realize with a direct mapping between

human hand and robot end-effector. Future system designer/devel-

oper should consider whether the use-case of the system requires a

direct mapping or not.

Robotic limitations: Independently of object - or hand/arm tracking,

Baxter’s capabilities are heavily limited. We do not have experience Suggesting another

alternativewith other robots in order to evaluate it, but we think for reproducing

object manipulations a simple robotic arm with 4DoF would be more

effective. We think the arrangement, complexity and size of Baxter’s

seven different joints makes it (a) more difficult to find IK solutions

and (b) needs a lot of time to physically reproduce the manipulation.

Except for the robot initialization, our system could be easily re-used

with other robots that provide the URDF, addressing future research

in that field.

Below we move from the technical context to reflections relating to

the design of future object-focused collaborative interfaces.

Perspective Shifts: Non-collocated collaborators have the flexibility

to independently orient themselves (or an object) during an object-

1 https://www.xbox.com/en-US/xbox-one/accessories/kinect
2 https://www.leapmotion.com/
3 https://www.myo.com/

79

80 discussion & future work

focused discussion. Yet, both studies demonstrated that a Shared per-

spective is useful and powerful when executing tasks with the ob-

ject. The Shared perspective allowed participants to discuss the objectImpact of perspective

without mentally rotating the object, and to describe parts of the ob-

ject that are not necessarily visible from their perspective. Designers

need to carefully consider camera placement and object/workspace

orientation in systems like ReMa to reduce people’s need to mentally

rotate objects.

Uses of Physical Object and Rotations: The ReMa system and study

confirm that indeed, rotations are an important part of object-focused

collaboration. In prior work [33], rotations of flat 2D objects can playUsing object

orientation for

communication
a role in both communicating (i.e. explaining something to someone

else), as well as coordinating action (i.e. whose turn is it to do some-

thing). We saw a similar effect in our study: TS rotations of the object

functioned as demonstrations of where to place a sticker, or annotate

the object. Rather than requiring the TS to verbally describe how to

turn the object, or demonstrating via video, ReMa simply performed

the rotation. Performing the rotation both drew attention to a specific

side of the artefact (communication), and signaled to the MS partici-

pant that something needed to be done at that site (coordination).

Handling for Comprehension: ReMa does not explicitly address the

use of rotating an object for comprehension (i.e. exploring the object,

or taking time to understand the object). The MS participant cannot

explicitly hold or manipulate their object; when the MS wanted to

explore their object, they had to explicitly ask the TS to re-orient their

object for them (Vignette 8). As a result, the MS participant does notReMa prevent

exploration of the

physical object
get to manipulate and explore the object for themselves—all object

interactions are mediated by cumbersome dialogue with TS. We also

observed that TS participants were more guarded in exploring their

own object. As we saw in Vignette 5, when TS participants realized

that their actions were immediately reflected at the MS (and might

potentially disrupt the MS participant’s actions), they avoided excess

object manipulations. In contrast, participants in video chat-only con-

ditions were free to manipulate their object, but at a cost of coordina-

tion. Video chat-only participants’ objects easily became unsynchro-

nized, necessitating the "start position" strategy.

In Study 1, we tried to design for comprehension acts by provid-

ing "Pause" functionality, which temporarily disabled the TS from

the MS. In principle, this allowed the TS participant to explore the ob-

ject without changing the MS participant’s view of the object. How-

ever, few participants used it for this purpose; participants mainly

used "Pause" to recreate a Shared perspective during Opposing per-

spective conditions. Future designs need to consider different ways

to move between synchronized and un-synchronized remote objects:

for example, through a clutching mechanism activated by proximity

discussion & future work 81

(i.e. only tracking a "shared" workspace, leaving personal workspace

for independent manipulation), or manual clutching (similar to the

pausing mechanism).

Expanding the Manipulator Space: We are interested in expanding

the capabilities of the manipulator site, particularly to capture more

degrees of freedom and object movement paths. This additional in- Going beyond the

current cababilitiesformation is important for object-focused collaborations to describe:

relationships between different objects; how an object should be used

or oriented, or how a multi-part object might be assembled. Captur-

ing the timing of a movement path is important, too. The current

ReMa implementation is limited to manipulating an object’s orienta-

tion (at 90 degree angles), which was sufficient to address our current

research questions. We are interested in further developing the ReMa

infrastructure such that more flexible and rich movements, positions

and timing are accurately rendered. This would allow even subtle

gestures or manipulations involving the object to be conveyed at a

distance (e.g. [28]).

Capturing and Rendering Manipulator Gestures: Prior work focused

on providing collaborators mechanisms with gesturing at objects in

the workspace, or at areas of the workspace [10, 14, 15, 20, 28, 29,

35, 39, 54, 55]. Our study participants used gestures—particularly ReMa does not

support gesturesin the video chat conditions—to point at various parts of the object.

When this capability was taken away in the ReMa conditions, this pre-

sented challenges for participants. Future research needs to develop

new ways to both capture gestures (such as deictic or hand gestures)

for object-focused collaboration, as well as determining how to ren-

der these gestures at a remote site for interpretability. While video is

a reasonable stop-gap solution, it ignores the subtleties of gesturing

at partially obscured or difficult-to-view locations on an object. It also

misses the entire production of the gesture, which may be important

for interpreting the meaning of a given gesture [39].

Bidirectional Capture and Manipulation: While interaction with the

physical object in our study was strictly unidirectional, we are also

interested in bidirectional scenarios. As illustrated in [6], while bidi- The eventual goal of

a bidirectional

system
rectional physical objects present compelling experiences, they also

present new questions. Most notably: how should conflicts be re-

solved? One approach to resolving conflicts is to relax what would

otherwise be strict synchronization. In this "relaxed" synchronization

mode, a collaborator could choose whether to follow the remote site’s

object depending on his/her situation. We envision a mechanism that

would allow a collaborator to explore their own interaction path with

an object, and resynchronize with their remote collaborator when

needed with little penalty to either.

82 discussion & future work

ReMa, and Human-Robot Interaction (HRI): Due to opportunistic rea-

sons we used a humanoid robot for both ReMa studies, and (in Study

1) we enabled head movements and different "facial" displays to pro-

vide feedback on ReMa’s movements. Extensive past HRI work in-Does the humanoid

robot affect our

results?
vestigating the impact of anthropomorphism on interaction suggests

that our choice may have affected our results, and that realizing ReMa

with a more generic robotic arm could have potentially created differ-

ent biases (e.g. [11, 27]). However, we found little evidence of the

humanoid form effects, for example none of our participants recog-

nized the "facial" displays in the post-study interview: "I was so fo-

cused on the task and the object. I did not see [the face] at all" [G4-P7]. We

removed these feature for Study 2. Future ReMa-like systems should

include and evaluate the effect of replacing the humanoid with a sim-

ple robotic arm implementation.

10
C O N C L U S I O N

This thesis explains the development of a novel system ReMa, which

automatically orients the proxy object to reflect the orientation at a

remote location. We evaluate the technical parts of the system com-

ponents and we also provide a ROS package making it accessible for

future research. We built and studied the Remote Manipulator (ReMa)

and explored the challenges of coordinating object-focused collabora-

tion when collaborators are remote from one another. Specifically, we

considered how collaborators’ perspectives on an object affects the

way in which they coordinate activity. We found that a shared per-

spective on the object is easier for people to manage compared to the

default Opposing perspective offered by conventional video chat. We

also found that ReMa can be a useful aid to collaboration, easing the

pressure of describing and reproducing verbal reorientation cues on

an object. Finally, our analysis shows that ReMa and a video chan-

nel complement each other when used together, giving people more

effective tools to coordinate their actions in object-focused collabo-

ration. Looking forward, our results suggest ways that researchers

should consider new workspaces that improve object-focused collab-

oration, including supporting simultaneous object manipulation and

remote gesture, managing synchronized and unsynchronized object

manipulation, and handling bidirectional capture and manipulation.

83

A
A P P E N D I X

This chapter provides supplementary materials for this thesis. In Sec-

tion A.1 we provide more background information about the math-

ematical fundamentals, the gimbal lock problem as well as quater-

nions. Next, Section A.2 shows the OptiTrack settings we chose for

our prototype system ReMa. Finally, Section A.3 provides the ques-

tionnaires and the interview questions we used for both user studies.

a.1 mathematical

Here, we elucidate a special matrix, called a rotation matrix. Rotation

matrices are used to describe for instance a rotation of a vector ~v in

Euclidean space. Rotating a vector ~v can be achieved through a matrix

multiplication Rx~v, where ~v must be a column vector. Here, we only

consider rotations in three-dimensional space.

Note: Rotation matrices are square matrices with θ ∈ R. In three di- Rotation matrix for

describing rotations

in 3D space
mensional space we have a 3x3 rotation matrix to describe a rotation

around a specific axis. In particular, the rotation matrix is an orthog-

onal matrix with det |R| = 1, and RT = R−1.

The following three matrices are used for basic rotations, or ele-

mental rotations with an angle θ around the x,y or z axis.

Rx(θ) =









1 0 0

0 cos θ − sin θ

0 sin θ cos θ









Ry(θ) =









cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ









Rz(θ) =









cos θ − sin θ 0

sin θ cos θ 0

0 0 1









It is clear that vector ~v must be a column vector. Otherwise, we

could not multiply it with the rotation matrix R. Summarized, we

have a 1x3 vector ~v and a 3x3 rotation matrix R, which we can multi-

ply. These rotation matrices are valid for left-handed and right-handed

Cartesian coordinate system. However, we do not only perform a

single rotation. To achieve that, we can multiply the elemental rota-

tion matrices. For instance, we want to rotate our vector ~v 90 degrees

around the x-axis, and after that another 90 degrees around the y-axis.

We can simply multiply the rotation matrices Rx(θ) and Ry(λ) with θ,λ

= 90 degrees. The resulting rotation matrix Rx,y(θ, λ) describes the ori-

85

86 appendix

x 1 i j k

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

Table 4: Quaternion multiplication

entation which we finally multiply with vector ~v.

Rxy(90, 90) =









1 0 0

0 cos(90) − sin(90)

0 sin(90) cos(90)

















cos(90) 0 sin(90)

0 1 0

− sin(90) 0 cos(90)









=









0 0 1

1 0 0

0 1 0









As we know matrix multiplication is non-commutative (like quater-

nions). Conclusively, when we use the rotation matrix to determineSimilarity to

quaternions the rotation of a vector ~v, we must consider the sequence of the rota-

tions.

Quaternions into rotation matrix (only works with normalized quater-

nions Section 2.1): q = qa+ i ∗ qb+ j ∗ qc+ k ∗ qd









1− 2 ∗ qc2 − 2 ∗ qd2 2 ∗ qb ∗ qc− 2 ∗ qd ∗ qa 2 ∗ qb ∗ qd+ 2 ∗ qc ∗ qa

2 ∗ qb ∗ qc+ 2 ∗ qd ∗ qa 1− 2 ∗ qb2 − 2 ∗ qd2 2 ∗ qc ∗ qd− 2 ∗ qb ∗ qa

2 ∗ qb ∗ qd− 2 ∗ qc ∗ qa 2 ∗ qc ∗ qd+ 2 ∗ qb ∗ qa 1− 2 ∗ qb2 − 2 ∗ qc2









Another common approach to describe rotations is Euler angles,Describing

orientations using

Euler angles
especially in physics and aerospace engineering. Every possible ro-

tation can be achieved as a result of three elemental rotations. Euler

angles are made of three angles, each angle around an axis in the

standard coordinate system. Following that, we have three matrices,

one for each axis and we multiply each 3x3 matrix. Even with Euler

angles the sequence of the rotations are very important, because they

result in a different solution for the rotation matrix. Basically, there

are six different possibilities, because we have three different rotation

axes 3! = 6. Often, these rotations are also called Roll, Pitch, and Yaw,

where Roll would be a rotation around the x-axis , Pitch a rotation

around the y-axis and Yaw around z. Following is an example from

the above introduced rotation matrix with Euler angles. Roll, Pitch

and Yaw is the sequence of our rotations. That means we have to

multiply Rx and Ry, and after that Rxy with Rz. The resulting matrix

is:

A.2 tracking settings 87

Euler-Angles: φ = 90; θ = 90; ψ = 0

RRPY(φ, θ, ψ) = RRPY(90, 90, 0)=









0 0 1

1 0 0

0 1 0









As we see, when we consider the sequence of the rotations we get

the same result with Euler angles. However, there are disadvantages

with Euler’s representation of orientations. The greatest issue with

Euler angles is gimbal lock which we briefly explain in this section.

Gimbal Lock: Gimbal lock describes the loss of one degree of free-

dom. Figure 35 (left) shows the three different gimbals red, green What is a gimbal

lock?and blue for rotations in Euler representation. We can generate a gim-

bal lock by a 90 degree rotation around one of the coordinate axes

Yaw,Pitch or Roll. For instance, in Figure 35 (right) we see that all

three gimbals are in the same plane. Conclusively, a rotation around

one axis is not possible anymore. Although we are able to rotate

around each axis, two axis will always result in the same position.

In robotics, a similarity to gimbal lock is called wrist flip. However,

we will not discuss it in this thesis.

Figure 35: Gimbal lock problem1

a.2 tracking settings

The Motive tool provides users various configuration opportunities

making it flexible and applicable for many situations. We used the

documentation and a trial and error approach to find the best set-

tings for our scenario. We used six Flex 13 cameras capturing the Detailed

configuration

settings of the

cameras

volume with 120 frames per second (FPS). We chose a resolution of

1280 x 1024 corresponding with 1.3 mega pixel. The camera exposes

per frame (EXP) which is measured in microseconds was 500 of 7500.

If we increase the EXP, it improves the visibility for smaller markers.

1 http://documentation.quest3d.com

88 appendix

On the other hand a higher EXP results in a higher probability of

errors because it will recognize even smaller reflections, and eventu-

ally interpret them as markers. We set the threshold to 200 of 255 to

determine the required brightness of a reflective marker for recogni-

tion. It depends on the distance between our cameras and markers.

We chose a relatively high number because we operated very close

the cameras, and we wanted to avoid interference with external light.

The LED Illumination (LED) allowed us to set the brightness level

for the camera IR LED ring. As mentioned, we operate very close to

the camera, therefore we used a lower setting for the LED. At the

beginning we had the highest possible brightness, but we saw a lot

of interference with even our hands, in particular with human fin-

gernails. After many tests, we finally decided to use the setting 3-4

(depending on the day) of 15, where 15 is the brightest configuration.

Finally, we used the standard settings for "short range" and "precision

mode" in the camera configuration menu.

a.3 study materials

The following pages provide the questionnaire from the first and the

second study, as well as the interview questions.

 Group #____________, Participant # ____________ Questionnaire study 1 A) Gender __ Female __ Male __ Prefer not to answer B) Age _____ C) Professional Background/Major: __ D) How often do you use video conferencing software such as Skype, Google Hangouts Video, FaceTime etc.? __ I have not used any video conferencing software before __ less than once a week __ once a week __ several times a week __ daily E) What type of activities have you used video conferencing for? Select all that apply. __ I have not used any video conferencing software before __ chat 1-on-1 __ chat with multiple people __ share video of a product or object __ get help with a task __ give help to others on a task __ other (please describe):

 Group #____________, Participant # ____________ F) Overall impression of the system: Given the choice, which of these systems would you use Baxter: Face to face Baxter: Over the shoulder Skype: Face to face Skype: Over the shoulder Very much prefer Would avoid G) Ease of use: How easy was each system to use? Baxter: Face to face Baxter: Over the shoulder Skype: Face to face Skype: Over the shoulder Very easy Very difficult H) Communication: How easy was it to communicate with your partner? Baxter: Face to face Baxter: Over the shoulder Skype: Face to face Skype: Over the shoulder Very easy Very difficult I) Perspective: How easy was it to know what your remote partner could see? Baxter: Face to face Baxter: Over the shoulder Skype: Face to face Skype: Over the shoulder Very easy Very difficult J) Remote Perspective: How easy was it for your partner to see what you could see? Baxter: Face to face Baxter: Over the shoulder Skype: Face to face Skype: Over the shoulder Very easy Very difficult

 Group #____________, Participant # ____________ Questionnaire study 2 A) Gender __ Female __ Male __ Prefer not to answer B) Age _____ C) Professional Background/Major: __ D) How often do you use video conferencing software such as Skype, Google Hangouts Video, FaceTime etc.? __ I have not used any video conferencing software before __ less than once a week __ once a week __ several times a week __ daily E) What type of activities have you used video conferencing for? Select all that apply. __ I have not used any video conferencing software before __ chat 1-on-1 __ chat with multiple people __ share video of a product or object __ get help with a task __ give help to others on a task __ other (please describe):

 Group #____________, Participant # ____________ F) Overall impression of the system: Given the choice, which of these systems would you use Baxter Only Skype Only Baxter and Skype Very much prefer Would avoid G) Ease of use: How easy was each system to use? Baxter Only Skype Only Baxter and Skype Very easy Very difficult H) Communication: How easy was it to communicate with your partner? Baxter Only Skype Only Baxter and Skype Very easy Very difficult I) Perspective: How easy was it to know what your remote partner could see? Baxter Only Skype Only Baxter and Skype Very easy Very difficult J) Remote Perspective: How easy was it for your partner to see what you could see? Baxter Only Skype Only Baxter and Skype Very easy Very difficult

For experimenter use only: [Skype: H | W] [Baxter: H | W] Group #____________ Interview questions K) What kinds of challenges did you experience with the Baxter (only) system? L) What kinds of challenges did you experience with the Skype (only) system? M) Did you trust Baxter (Baxter only)? N) Tradeoffs? Lose/Win – Advantages/Disadvantages O) Use pause function yes/no? Why? P) Reasons for Baxter/video – applications Q) Scenarios physical representation useful R) More attention to video/Baxter – Why? (Study 2)

B I B L I O G R A P H Y

[1] Ronald M Baecker. Readings in groupware and computer-supported

cooperative work: Assisting human-human collaboration. Elsevier,

1993.

[2] Istvan Barakonyi, Tamer Fahmy, and Dieter Schmalstieg. “Re-

mote Collaboration Using Augmented Reality Videoconferenc-

ing.” In: Proceedings of Graphics Interface 2004. GI ’04. London,

Ontario, Canada: Canadian Human-Computer Communications

Society, 2004, pp. 89–96. isbn: 1-56881-227-2. url: http://dl.

acm.org/citation.cfm?id=1006058.1006070.

[3] Lukas Barinka. Inverse Kinematics - Basic Methods. Tech. rep. Czech

Technical University, 2002. url: http://old.cescg.org/CESCG-

2002/LBarinka/paper.pdf.

[4] Patrick Beeson and Barrett Ames. “TRAC-IK: An open-source

library for improved solving of generic inverse kinematics.” In:

Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International

Conference on. IEEE. 2015, pp. 928–935.

[5] Mark Billinghurst and Hirokazu Kato. “Collaborative Augmented

Reality.” In: Commun. ACM 45.7 (July 2002), pp. 64–70. issn:

0001-0782. doi: 10.1145/514236.514265. url: http://doi.acm.

org/10.1145/514236.514265.

[6] Scott Brave and Andrew Dahley. “inTouch: A Medium for Hap-

tic Interpersonal Communication.” In: CHI ’97 Extended Abstracts

on Human Factors in Computing Systems. CHI EA ’97. Atlanta,

Georgia: ACM, 1997, pp. 363–364. isbn: 0-89791-926-2. doi: 10.

1145/1120212.1120435. url: http://doi.acm.org/10.1145/

1120212.1120435.

[7] Jed R Brubaker, Gina Venolia, and John C Tang. “Focusing on

shared experiences: moving beyond the camera in video com-

munication.” In: Proceedings of the Designing Interactive Systems

Conference. ACM. 2012, pp. 96–105.

[8] Herbert H Clark, Susan E Brennan, et al. “Grounding in com-

munication.” In: Perspectives on socially shared cognition 13.1991

(1991), pp. 127–149.

[9] Rosen Diankov and James Kuffner. “Openrave: A planning ar-

chitecture for autonomous robotics.” In: Robotics Institute, Pitts-

burgh, PA, Tech. Rep. CMU-RI-TR-08-34 79 (2008).

95

http://dl.acm.org/citation.cfm?id=1006058.1006070
http://dl.acm.org/citation.cfm?id=1006058.1006070
http://old.cescg.org/CESCG-2002/LBarinka/paper.pdf
http://old.cescg.org/CESCG-2002/LBarinka/paper.pdf
https://doi.org/10.1145/514236.514265
http://doi.acm.org/10.1145/514236.514265
http://doi.acm.org/10.1145/514236.514265
https://doi.org/10.1145/1120212.1120435
https://doi.org/10.1145/1120212.1120435
http://doi.acm.org/10.1145/1120212.1120435
http://doi.acm.org/10.1145/1120212.1120435

96 bibliography

[10] Omid Fakourfar, Kevin Ta, Richard Tang, Scott Bateman, and

Anthony Tang. “Stabilized annotations for mobile remote as-

sistance.” In: Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems. ACM. 2016, pp. 1548–1560.

[11] Julia Fink. “Anthropomorphism and human likeness in the de-

sign of robots and human-robot interaction.” In: International

Conference on Social Robotics. Springer. 2012, pp. 199–208.

[12] Christian Freksa. “Qualitative spatial reasoning.” In: Cognitive

and linguistic aspects of geographic space 63 (1991), pp. 361–372.

[13] Susan R Fussell, Leslie D Setlock, and Robert E Kraut. “Effects

of head-mounted and scene-oriented video systems on remote

collaboration on physical tasks.” In: Proceedings of the SIGCHI

conference on Human factors in computing systems. ACM. 2003,

pp. 513–520.

[14] Susan R. Fussell, Leslie D. Setlock, Jie Yang, Jiazhi Ou, Elizabeth

Mauer, and Adam D. I. Kramer. “Gestures over Video Streams

to Support Remote Collaboration on Physical Tasks.” In: Hum.-

Comput. Interact. 19.3 (Sept. 2004), pp. 273–309. issn: 0737-0024.

doi: 10.1207/s15327051hci1903_3. url: http://dx.doi.org/

10.1207/s15327051hci1903_3.

[15] Steffen Gauglitz, Benjamin Nuernberger, Matthew Turk, and To-

bias Höllerer. “In Touch with the Remote World: Remote Col-

laboration with Augmented Reality Drawings and Virtual Nav-

igation.” In: Proceedings of the 20th ACM Symposium on Virtual

Reality Software and Technology. VRST ’14. Edinburgh, Scotland:

ACM, 2014, pp. 197–205. isbn: 978-1-4503-3253-8. doi: 10.1145/

2671015.2671016. url: http://doi.acm.org/10.1145/2671015.

2671016.

[16] Ray C Goertz and William M Thompson. “Electronically con-

trolled manipulator.” In: Nucleonics (US) Ceased publication 12

(1954).

[17] Andrew Goldenberg, Beno Benhabib, and Robert Fenton. “A

complete generalized solution to the inverse kinematics of robots.”

In: IEEE Journal on Robotics and Automation 1.1 (1985), pp. 14–20.

[18] Saul Greenberg, Carl Gutwin, and Mark Roseman. “Seman-

tic telepointers for groupware.” In: Computer-Human Interaction,

1996. Proceedings., Sixth Australian Conference on. IEEE. 1996, pp. 54–

61.

[19] Pavel Gurevich, Joel Lanir, and Benjamin Cohen. “Design and

Implementation of TeleAdvisor: A Projection-Based Augmented

Reality System for Remote Collaboration.” In: Comput. Supported

Coop. Work 24.6 (Dec. 2015), pp. 527–562. issn: 0925-9724. doi:

10.1007/s10606-015-9232-7. url: http://dx.doi.org/10.

1007/s10606-015-9232-7.

https://doi.org/10.1207/s15327051hci1903_3
http://dx.doi.org/10.1207/s15327051hci1903_3
http://dx.doi.org/10.1207/s15327051hci1903_3
https://doi.org/10.1145/2671015.2671016
https://doi.org/10.1145/2671015.2671016
http://doi.acm.org/10.1145/2671015.2671016
http://doi.acm.org/10.1145/2671015.2671016
https://doi.org/10.1007/s10606-015-9232-7
http://dx.doi.org/10.1007/s10606-015-9232-7
http://dx.doi.org/10.1007/s10606-015-9232-7

bibliography 97

[20] Pavel Gurevich, Joel Lanir, Benjamin Cohen, and Ran Stone.

“TeleAdvisor: A Versatile Augmented Reality Tool for Remote

Assistance.” In: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. CHI ’12. Austin, Texas, USA: ACM,

2012, pp. 619–622. isbn: 978-1-4503-1015-4. doi: 10.1145/2207676.

2207763. url: http://doi.acm.org/10.1145/2207676.2207763.

[21] Mary Hegarty and David Waller. “A dissociation between men-

tal rotation and perspective-taking spatial abilities.” In: Intelli-

gence 32.2 (2004), pp. 175–191.

[22] Peter F Hokayem and Mark W Spong. “Bilateral teleoperation:

An historical survey.” In: Automatica 42.12 (2006), pp. 2035–2057.

[23] Berthold KP Horn. “Closed-form solution of absolute orienta-

tion using unit quaternions.” In: JOSA A 4.4 (1987), pp. 629–

642.

[24] Steven Johnson, Madeleine Gibson, and Bilge Mutlu. “Hand-

held or handsfree?: Remote collaboration via lightweight head-

mounted displays and handheld devices.” In: Proceedings of the

18th ACM Conference on Computer Supported Cooperative Work &

Social Computing. ACM. 2015, pp. 1825–1836.

[25] Brennan Jones, Anna Witcraft, Scott Bateman, Carman Neustaedter,

and Anthony Tang. “Mechanics of camera work in mobile video

collaboration.” In: Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems. ACM. 2015, pp. 957–

966.

[26] Brigitte Jordan and Austin Henderson. “Interaction analysis:

Foundations and practice.” In: The journal of the learning sciences

4.1 (1995), pp. 39–103.

[27] Takayuki Kanda, Takahiro Miyashita, Taku Osada, Yuji Haikawa,

and Hiroshi Ishiguro. “Analysis of humanoid appearances in

human–robot interaction.” In: IEEE Transactions on Robotics 24.3

(2008), pp. 725–735.

[28] David Kirk, Andy Crabtree, and Tom Rodden. “Ways of the

hands.” In: ECSCW 2005. Springer. 2005, pp. 1–21.

[29] David Kirk and Danae Stanton Fraser. “Comparing remote ges-

ture technologies for supporting collaborative physical tasks.”

In: Proceedings of the SIGCHI conference on Human Factors in com-

puting systems. ACM. 2006, pp. 1191–1200.

[30] David Kirsh and Paul Maglio. “On distinguishing epistemic

from pragmatic action.” In: Cognitive science 18.4 (1994), pp. 513–

549.

[31] John Krakauer, M F Ghilardi, and Claude Ghez. “Independent

learning of internal models for kinematic and dynamic control

of reaching.” In: 2 (Dec. 1999), pp. 1026–31.

https://doi.org/10.1145/2207676.2207763
https://doi.org/10.1145/2207676.2207763
http://doi.acm.org/10.1145/2207676.2207763

98 bibliography

[32] Johannes Maria Kraus, Florian Nothdurft, Philipp Hock, David

Scholz, Wolfgang Minker, and Martin Baumann. “Human Af-

ter All: Effects of Mere Presence and Social Interaction of a Hu-

manoid Robot as a Co-Driver in Automated Driving.” In: Pro-

ceedings of the 8th International Conference on Automotive User In-

terfaces and Interactive Vehicular Applications Adjunct. ACM. 2016,

pp. 129–134.

[33] Russell Kruger, Sheelagh Carpendale, Stacey D Scott, and Saul

Greenberg. “Roles of orientation in tabletop collaboration: Com-

prehension, coordination and communication.” In: Computer Sup-

ported Cooperative Work (CSCW) 13.5 (2004), pp. 501–537.

[34] Hideaki Kuzuoka, Toshio Kosuge, and Masatomo Tanaka. “Ges-

tureCam: A Video Communication System for Sympathetic Re-

mote Collaboration.” In: Proceedings of the 1994 ACM Conference

on Computer Supported Cooperative Work. CSCW ’94. Chapel Hill,

North Carolina, USA: ACM, 1994, pp. 35–43. isbn: 0-89791-689-

1. doi: 10.1145/192844.192866. url: http://doi.acm.org/10.

1145/192844.192866.

[35] Hideaki Kuzuoka, Shinya Oyama, Keiichi Yamazaki, Kenji Suzuki,

and Mamoru Mitsuishi. “GestureMan: a mobile robot that em-

bodies a remote instructor’s actions.” In: Proceedings of the 2000

ACM conference on Computer supported cooperative work. ACM.

2000, pp. 155–162.

[36] Daniel Leithinger, Sean Follmer, Alex Olwal, and Hiroshi Ishii.

“Physical Telepresence: Shape Capture and Display for Embod-

ied, Computer-mediated Remote Collaboration.” In: Proceedings

of the 27th Annual ACM Symposium on User Interface Software

and Technology. UIST ’14. Honolulu, Hawaii, USA: ACM, 2014,

pp. 461–470. isbn: 978-1-4503-3069-5. doi: 10.1145/2642918.

2647377. url: http://doi.acm.org/10.1145/2642918.2647377.

[37] Juxi Leitner, M Luciw, Alexander Foerster, and J Schmidhuber.

“Teleoperation of a 7 DOF Humanoid Robot Arm Using Human

Arm Accelerations and EMG Signals.” In: June 2014.

[38] Christian Licoppe, Paul K. Luff, Christian Heath, Hideaki Kuzuoka,

Naomi Yamashita, and Sylvaine Tuncer. “Showing Objects: Hold-

ing and Manipulating Artefacts in Video-mediated Collabora-

tive Settings.” In: Proceedings of the 2017 CHI Conference on Hu-

man Factors in Computing Systems. CHI ’17. Denver, Colorado,

USA: ACM, 2017, pp. 5295–5306. isbn: 978-1-4503-4655-9. doi:

10.1145/3025453.3025848. url: http://doi.acm.org/10.

1145/3025453.3025848.

[39] Paul Luff, Christian Heath, Hideaki Kuzuoka, Jon Hindmarsh,

Keiichi Yamazaki, and Shinya Oyama. “Fractured ecologies: cre-

ating environments for collaboration.” In: Human-Computer In-

teraction 18.1 (2003), pp. 51–84.

https://doi.org/10.1145/192844.192866
http://doi.acm.org/10.1145/192844.192866
http://doi.acm.org/10.1145/192844.192866
https://doi.org/10.1145/2642918.2647377
https://doi.org/10.1145/2642918.2647377
http://doi.acm.org/10.1145/2642918.2647377
https://doi.org/10.1145/3025453.3025848
http://doi.acm.org/10.1145/3025453.3025848
http://doi.acm.org/10.1145/3025453.3025848

bibliography 99

[40] Guan-Chun Luh. “Intuitive Muscle-Gesture based Robot Nav-

igation Control Using Wearable Gesture Armband.” In: July

2015.

[41] Filip Maric, Ivan Jurin, Ivan Markovic, Zoran Kalafatic, and

Ivan Petrovic. “Robot arm teleoperation via RGBD sensor palm

tracking.” In: May 2016, pp. 1093–1098.

[42] Terrance Mok and Lora Oehlberg. “Critiquing Physical Proto-

types for a Remote Audience.” In: Proceedings of the 2017 Confer-

ence on Designing Interactive Systems. ACM. 2017, pp. 1295–1307.

[43] João Pedro Morais, Svetlin Georgiev, and Wolfgang Sprößig.

“Quaternions and Spatial Rotation.” In: Real Quaternionic Calcu-

lus Handbook. Basel: Springer Basel, 2014, pp. 35–51. isbn: 978-3-

0348-0622-0. doi: 10.1007/978-3-0348-0622-0_2. url: https:

//doi.org/10.1007/978-3-0348-0622-0_2.

[44] Carman Neustaedter, Gina Venolia, Jason Procyk, and Daniel

Hawkins. “To Beam or Not to Beam: A Study of Remote Telep-

resence Attendance at an Academic Conference.” In: Proceed-

ings of the 19th ACM Conference on Computer-Supported Cooper-

ative Work & Social Computing. CSCW ’16. San Francisco, Cali-

fornia, USA: ACM, 2016, pp. 418–431. isbn: 978-1-4503-3592-8.

doi: 10.1145/2818048.2819922. url: http://doi.acm.org/10.

1145/2818048.2819922.

[45] Jacki O’Neill, Stefania Castellani, Antonietta Grasso, Frederic

Roulland, and Peter Tolmie. “Representations can be good enough.”

In: ECSCW 2005. Springer. 2005, pp. 267–286.

[46] Richard P. Paul. “Robot Manipulator: Mathematics, Program-

ming and Control.” In: (Jan. 1981).

[47] Natural Point. “Optitrack.” In: Natural Point, Inc.,[Online]. Avail-

able: http://www. naturalpoint. com/optitrack/.[Accessed 22 7 2017]

(2017).

[48] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully

Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. “ROS:

an open-source Robot Operating System.” In: ICRA workshop on

open source software. Vol. 3. 3.2. Kobe. 2009, p. 5.

[49] Irene Rae, Bilge Mutlu, and Leila Takayama. “Bodies in motion:

mobility, presence, and task awareness in telepresence.” In: Pro-

ceedings of the 32nd annual ACM conference on Human factors in

computing systems. ACM. 2014, pp. 2153–2162.

[50] Irene Rae, Leila Takayama, and Bilge Mutlu. “In-body Expe-

riences: Embodiment, Control, and Trust in Robot-mediated

Communication.” In: Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems. CHI ’13. Paris, France: ACM,

2013, pp. 1921–1930. isbn: 978-1-4503-1899-0. doi: 10 . 1145 /

https://doi.org/10.1007/978-3-0348-0622-0_2
https://doi.org/10.1007/978-3-0348-0622-0_2
https://doi.org/10.1007/978-3-0348-0622-0_2
https://doi.org/10.1145/2818048.2819922
http://doi.acm.org/10.1145/2818048.2819922
http://doi.acm.org/10.1145/2818048.2819922
https://doi.org/10.1145/2470654.2466253
https://doi.org/10.1145/2470654.2466253
https://doi.org/10.1145/2470654.2466253

100 bibliography

2470654.2466253. url: http://doi.acm.org/10.1145/2470654.

2466253.

[51] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. “A Motion

Retargeting Method for Effective Mimicry-based Teleoperation

of Robot Arms.” In: Proceedings of the 2017 ACM/IEEE Interna-

tional Conference on Human-Robot Interaction. HRI ’17. Vienna,

Austria: ACM, 2017, pp. 361–370. isbn: 978-1-4503-4336-7. doi:

10.1145/2909824.3020254. url: http://doi.acm.org/10.

1145/2909824.3020254.

[52] Kyle B. Reed and Michael A. Peshkin. “Physical Collaboration

of Human-Human and Human-Robot Teams.” In: EEE Trans.

Haptics 1.2 (July 2008), pp. 108–120. issn: 1939-1412. doi: 10.

1109/TOH.2008.13. url: http://dx.doi.org/10.1109/TOH.

2008.13.

[53] Ruben Smits, H Bruyninckx, and E Aertbeliën. “Kdl: Kinemat-

ics and dynamics library.” In: Avaliable: http://www. orocos. org/kdl

(2011).

[54] Anthony Tang, Michael Boyle, and Saul Greenberg. “Under-

standing and mitigating display and presence disparity in mixed

presence groupware.” In: Journal of Research and Practice in Infor-

mation Technology 37.2 (2005), pp. 193–210.

[55] Anthony Tang, Michel Pahud, Kori Inkpen, Hrvoje Benko, John

C Tang, and Bill Buxton. “Three’s company: understanding com-

munication channels in three-way distributed collaboration.”

In: Proceedings of the 2010 ACM conference on Computer supported

cooperative work. ACM. 2010, pp. 271–280.

[56] John C Tang. “Findings from observational studies of collabo-

rative work.” In: International Journal of Man-machine studies 34.2

(1991), pp. 143–160.

[57] John C Tang and Scott L Minneman. “VideoDraw: a video in-

terface for collaborative drawing.” In: ACM Transactions on In-

formation Systems (TOIS) 9.2 (1991), pp. 170–184.

[58] John C Tang and Scott Minneman. “VideoWhiteboard: video

shadows to support remote collaboration.” In: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems.

ACM. 1991, pp. 315–322.

[59] Peter Turpel, Bing Xia, Xinyi Ge, Shuda Mo, and Steve Vozar.

“Balance-arm tablet computer stand for robotic camera control.”

In: Proceedings of the 8th ACM/IEEE international conference on

Human-robot interaction. IEEE Press. 2013, pp. 241–242.

[60] Jeffrey M Zacks, Jon Mires, Barbara Tversky, and Eliot Hazel-

tine. “Mental spatial transformations of objects and perspec-

tive.” In: Spatial Cognition and Computation 2.4 (2000), pp. 315–

332.

https://doi.org/10.1145/2470654.2466253
https://doi.org/10.1145/2470654.2466253
https://doi.org/10.1145/2470654.2466253
http://doi.acm.org/10.1145/2470654.2466253
http://doi.acm.org/10.1145/2470654.2466253
https://doi.org/10.1145/2909824.3020254
http://doi.acm.org/10.1145/2909824.3020254
http://doi.acm.org/10.1145/2909824.3020254
https://doi.org/10.1109/TOH.2008.13
https://doi.org/10.1109/TOH.2008.13
http://dx.doi.org/10.1109/TOH.2008.13
http://dx.doi.org/10.1109/TOH.2008.13

bibliography 101

[61] Dingyun Zhu, Tom Gedeon, and Ken Taylor. “Exploring Cam-

era Viewpoint Control Models for a Multi-tasking Setting in

Teleoperation.” In: Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems. CHI ’11. Vancouver, BC, Canada:

ACM, 2011, pp. 53–62. isbn: 978-1-4503-0228-9. doi: 10.1145/

1978942.1978952. url: http://doi.acm.org/10.1145/1978942.

1978952.

https://doi.org/10.1145/1978942.1978952
https://doi.org/10.1145/1978942.1978952
http://doi.acm.org/10.1145/1978942.1978952
http://doi.acm.org/10.1145/1978942.1978952

D E C L A R AT I O N

Ich versichere, dass ich die vorliegende Arbeit (bei einer Gruppe-

narbeit: den entsprechend gekennzeichneten Anteil der Arbeit) selb-

ständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe.

Ich erkläre hiermit weiterhin, dass die vorgelegte Arbeit zuvor weder

von mir noch von einer anderen Person an dieser oder einer anderen

Hochschule eingereicht wurde.

Darüber hinaus ist mir bekannt, dass die Unrichtigkeit dieser Erk-

lärung eine Benotung der Arbeit mit der Note „nicht ausreichend“zur

Folge hat und einen Ausschluss von der Erbringung weiterer Prü-

fungsleistungen zur Folge haben kann.

University of Calgary, Alberta (Canada), April 2017 - September 2017

Martin Feick

colophon

This document was typeset using the typographical look-and-feel

classicthesis developed by André Miede. The style was inspired

by Robert Bringhurst’s seminal book on typography “The Elements of

Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the

author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of January 23, 2018 (classicthesis).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation & Research Question
	1.2 Thesis Objectives
	1.3 Overview

	2 Foundations
	2.1 Mathematical fundamentals
	2.2 ROS – Robot Operation System
	2.2.1 Filesystem
	2.2.2 Computation Graph
	2.2.3 Robot Model
	2.2.4 Tf - Transform

	2.3 Inverse kinematics
	2.4 Baxter research robot
	2.5 OptiTrack

	3 Related Work
	3.1 Challenges of Object-Focused Collaboration
	3.2 Gestures, Perspective and Orientation in Remote Collaboration
	3.3 Telepresence Robots

	4 System design
	5 Technologies
	5.1 Tracking & Calibration
	5.2 Baxter setup

	6 Implementation
	6.1 Architecture
	6.2 Server
	6.3 Tracking Client
	6.4 Inverse Kinematics & Collision Avoidance
	6.5 Inverse Kinematics package
	6.6 Synchronization
	6.7 Modifications for User Studies
	6.8 Summary

	7 System Evaluation
	7.1 Accuracy & Usability
	7.2 Limitations

	8 User Studies
	8.1 Design study 1 - The Impact of Perspective
	8.2 Results & Findings study 1
	8.3 Design study 2 - Role of Physical Proxy
	8.4 Results & Findings study 2

	9 Discussion & Future Work
	10 Conclusion
	A Appendix
	A.1 Mathematical
	A.2 Tracking settings
	A.3 Study materials

	Bibliography
	Declaration
	Colophon

