
UNIVERSITY OF CALGARY

STRATOS: The Design of Visualization to Support

Decision-making in Software Release Planning

by

Bon Adriel Aseniero

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

DECEMBER, 2014

© Bon Adriel Aseniero 2014

ii

ABSTRACT

Software is typically developed in incremental stages or releases. Planning releases

involves deciding on which features of the software should have implementation priority.

This is a complex planning process involving numerous constraints and factors, trade-offs,

that often make decisions difficult. Since the success of a product depends on this plan, it

is vital for planners to examine the trade-offs between different alternatives in order to

make an informed choice. To support this type of decision-making, my exploration

involved designing and implementing STRATOS—a visualization tool showing several

software release plans simultaneously within a singular layout, helping planners

understand the differences among them. Through a qualitative evaluation, I found that it

enabled a range of decision-making processes, ultimately helping participants in choosing

an optimal release plan. My contributions include the hybrid visualization, STRATOS, and

the findings from its evaluation that implicate design for future visualizations supporting

decision-making.

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help and encouragement I have

received from a number of people. Most importantly, I would like to express my deepest

gratitude to my supervisors, Dr. Sheelagh Carpendale and Dr. Anthony Tang, who have

given me much needed academic guidance and support throughout my master’s degree. I

thank them for acting as my mentors—inspiring me with their wonderful insights, and

helping me grow both academically and personally through countless advice. I also express

the same gratitude to Dr. Guenther Ruhe who have provided me with guidance and

imparting knowledge on software release planning—knowledge that prove necessary in

the completion of this thesis. I also thank Dr. Ehud Sharlin who spearheaded my interest

in Human–Computer Interaction, and Dr. Saul Greenberg for the advice and

encouragement he has given me. I also thank my examiners, Dr. Larry Katz and Dr. Robert

Kremer.

I would also like to thank the Department of Computer Science at the University of Calgary,

and to Alberta Innovates Technology Futures (AITF) and Graphics Animation and New

Media (GRAND) whose funding allowed me to pursue my research in information

visualization.

I also express my gratitude to all of the members of the Interactions Lab who have helped

me throughout the course of my stay in the lab. I consider these people to be both colleagues

and friends who helped me grow as an individual: I give thanks to David Ledo and Tiffany

Wun whose collaborative contributions enormously helped in the completion of this thesis;

to Lindsay MacDonald, Brennan Jones, and Jennifer Payne who helped me in making this

iv

thesis more pleasant to read; and to Jagoda Walny, Setareh Aghel Manesh, Jiannan Li,

Mona Hosseinkhani, Fateme Rajabi, and Claudia Maurer who helped in every appreciable

way.

v

I give my sincere thanks to special friends who have provided me with much needed

support and encouragement: Riah Fielding-Walters, Jonny Hu, Javier Lopez-Montenegro

Ramil, Riane Vardeleon, Leo Leung, Derek Szeto, and Anthony Yan. Thanks as well to all

the members of Eidolon Free Company who shared their time with me, giving valued

support and entertainment: Len Tan, Jasmine Tan, and Natalee Koh.

Lastly, I wish to express my deepest gratitude to my family: to my parents, Purificacion

Aseniero and Aniano Aseniero, whose countless support, hard work, and sacrifice helped

me become successful, and to my sister, Faye Ann Aseniero, who helped me improve

through her own way–Thank you for believing in me!

vi

DEDICATION

To Mama and Papa

vii

TABLE OF CONTENTS

Abstract ... ii

Acknowledgements .. iii

Dedication ... v

Table of Contents ... vi

List of Figures ... x

List of Tables and Code Listings ... xiii

List of Abbreviations ... xiv

Chapter 1: Introduction ... 1

1.1. Background and Motivation .. 2

1.1.1. Common Practices in Release Planning ... 2

1.1.2. ReleasePlannerTM ... 4

1.1.3. Motivation ... 7

1.2. Approach .. 8

1.3. Context and Scope ... 10

1.4. Contributions.. 11

1.5. Research Acknowledgements .. 11

1.6. Document Overview .. 12

Chapter 2: In Perspective .. 13

2.1. Visualizations for Software Development ... 14

viii

2.1.1. Visualizations of Software Architecture ... 14

2.1.2. Visualizations of Development Schedule ... 16

2.1.3. Visualizations of Software Release Planning Factors 18

2.2. Visualizations that Influenced the Design of STRATOS ... 25

2.2.1. Parallel Sets ... 27

Chapter 3: STRATOS: Design and implementation .. 29

3.1. STRATOS: Definition ... 31

3.2. Design Process ... 31

3.2.1. Design Guidelines ... 33

3.2.2. Creating the Hybrid Visualization .. 36

3.3. Visual Representation .. 40

3.3.1. Plans .. 40

3.3.2. Releases... 42

3.3.3. Features ... 43

3.3.4. Comparison with Parallel Sets .. 44

3.4. Interaction .. 45

3.5. Implementation .. 49

3.5.1. Drawing Algorithm ... 49

3.6. Chapter Summary .. 60

Chapter 4: STRATOS: Study ... 61

ix

4.1. Methodology .. 62

4.1.1. Participants .. 62

4.1.2. Setup ... 62

4.1.3. Procedure .. 63

4.1.4. Exploration Phase Dataset .. 65

4.2. Results .. 67

4.3. Decision Strategies... 69

4.4. Participant Inclination .. 71

4.4.1. Visual Inclination .. 73

4.4.2. Numeric Inclination .. 74

4.4.3. Mixed Inclination .. 76

4.4.4. Participant Inclinations: General Observations .. 77

4.5. Discussion and Lessons Learned ... 77

4.5.1. Discussion Regarding the Design Guidelines ... 78

4.6. Chapter Summary .. 81

Chapter 5: Conclusion... 82

5.1. The Work Thus Far .. 82

5.1.1. Revisiting the Thesis Questions .. 83

5.1.2. Proposed Solution ... 84

5.1.3. Contributions... 88

x

5.2. The Work Ahead .. 88

5.2.1. Improving STRATOS .. 88

5.2.2. Further Evaluation and Investigation .. 91

5.3. Closure ... 91

Bibliography ... 93

Appendix I: Exploration phase dataset ... 97

Appendix II: Previous iterations of stratos ... 109

xi

LIST OF FIGURES

Chapter 1 Figures

Figure 1.1. Sample release planning data .. 6

Figure 1.2. The scope of this thesis. ... 10

Chapter 2 Figures

Figure 2.1. An example of a UML class diagram. ... 15

Figure 2.2. An example Gantt chart ... 16

Figure 2.3. An example Kanban board .. 17

Figure 2.4. The Feature Survival Chart (FSC) ... 19

Figure 2.5. The Feature Growth Chart (FGC) ... 20

Figure 2.6. An example visualization of requirements interdependencies 22

Figure 2.7. Several visualizations showing risks assessment .. 24

Figure 2.8. Charles Joseph Minard’s diagram ... 25

Figure 2.9. An example parallel coordinate chart .. 26

Figure 2.10. An example graph tree notation ... 27

Figure 2.11. An example parallel sets .. 28

Chapter 3 Figures

Figure 3.1. The hybrid visualization used in STRATOS. ... 30

Figure 3.2. The nine stages of design study methodology ... 31

file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406958422
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406958423
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959258
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959259
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959260
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959261
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959262
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959263
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959264
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959265
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959266
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959267
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959268
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959529
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959530

xii

Figure 3.3. A UML diagram representation of the structure of the basic release planning

factors. ... 36

Figure 3.4. Some major observations about the data. .. 38

Figure 3.5. A view of STRATOS in which the middle alternative plan is highlighted. 39

Figure 3.6. Header ... 41

Figure 3.7. The flow diagram ... 41

Figure 3.8. Features .. 43

Figure 3.9. Selecting the same release number .. 47

Figure 3.10. State of the visualization when a feature is selected by the planner............ 48

Figure 3.11. Filtering resource types. .. 49

Figure 3.12. A flow visual element .. 51

Figure 3.13. A feature visual element .. 51

Figure 3.14. A release visual element .. 53

Figure 3.15. The breakdown of the top portion of an alternative plan 54

Figure 3.16. Screen division for a solution set with three alternative plans. 58

Chapter 4 Figures

Figure 4.1. A participant interacting with STRATOS during its study. 63

Figure 4.2. A bar chart showing the number of participants per alternative. 67

Figure 4.3. A bar chart of how each participant agreed according to their perceived ease

of use and readability of STRATOS .. 68

Figure 4.4. Chart showing the distribution of participants into the different inclination

categories .. 72

file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959531
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959531
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959532
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959533
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959534
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959535
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959536
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959537
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959538
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959539
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959540
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959541
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959542
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959543
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959544
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959449
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959450
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959451
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959451
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959452
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959452

xiii

Figure 4.5. A participant with a visual inclination ... 73

Figure 4.6. A photo of STRATOS after a participant with a numeric inclination used it. . 75

Figure 4.7. A participant with mix inclination ... 76

Chapter 5 Figures

Figure 5.1. Implementing a step-by-step guide .. 89

Appendix II Sketches and Iterations

Sketch 1. The first sketch concept of the hybrid visualization of STRATOS 110

Sketch 2. A sketch revisiting the structure and layout of STRATOS 111

Sketch 3. Some changes to the visualization after a pilot study 114

Iteration 1. The first rapid prototype of STRATOS ... 110

Iteration 2. A version of STRATOS that do not visualize information on feature priority

votes and stakeholder feature points. .. 112

Iteration 3. Iteration including stakeholder information ... 113

Iteration 4. The look and feel of STRATOS during the study ... 115

Iteration 5. The final iteration of STRATOS .. 116

file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959453
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959454
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959455
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959423
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007530
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007531
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007532
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007625
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007626
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007626
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007627
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007628
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20FINAL%20VERSION.docx%23_Toc407007629

xiv

LIST OF TABLES AND CODE LISTINGS

Table 4.1. A summarized overview of the potential trade-offs among the alternative plans

in the solution set used in the study’s exploration phase. ... 66

Code Listing 1. Pseudocode of how to draw a single flow visual element. 50

Code Listing 2. Pseudocode of how to draw a single Feature visual element. 52

Code Listing 3. Pseudocode of how to draw a single Release visual element. 53

Code Listing 4. Pseudocode of how to draw the top portion of an alternative plan. 55

Code Listing 5. Pseudocode of dividing the screen. .. 56

Code Listing 6. Calculating the positions. ... 57

Code Listing 7. Pseudocode of how to calculate the positions and thickness of the flows

diagrams. ... 59

Spreadsheet 1. The solution set. .. 98

Spreadsheet 2. The stakeholder feature points (SHFP) and degree of optimality for each

alternative plan. ... 98

Spreadsheet 3. Information about the features of the software. 105

Spreadsheet 4. The values of stakeholder priority votes on each feature...................... 106

Spreadsheet 5. The different resources and their maximum allocation per release. 107

Spreadsheet 6. The stakeholder weights.. 107

Spreadsheet 7. The stakeholder satisfaction for each alternative plan. 108

file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959705
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959705
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959729
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959730
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959731
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959732
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959733
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959734
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959735
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406959735
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950215
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950216
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950216
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950217
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950218
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950219
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950220
file:///C:/Users/BonAdriel/Dropbox/Thesis/BON_MSC_THESIS_2014%20-%20Corrected.docx%23_Toc406950221

xv

LIST OF ABBREVIATIONS

2D ……………………………………………………………...……...… Two-

dimensional

FGC …………………………………………………………………. Feature Growth

Chart

FSC ………………………………………………………………… Feature Survival

Chart

HCI ………………………………………….……………… Human–Computer

Interaction

HTML5 ………………………………………….…..…….. HyperText Markup Language

5

Infovis …………………………………………………………… Information

Visualization

SHFP ……………………………….………………………….. Stakeholder Feature

Points

STRATOS …………………………...... Strategic software release planning Oversight

Support

UML ………………………………………………………….. Unified Modelling

Language

1

Chapter 1
INTRODUCTION

This thesis explores how planners’ (e.g. project or product managers, development teams,

etc.) decision-making processes can be assisted in order to enable them to make informed

decisions. A well-informed decision is vital in choosing a plan for releasing software into

market. Normally, this is done through meticulous examination of different factors and

constraints that are typically interconnected with one another. This thesis is concerned with

how to support planners in choosing an optimal plan by visualizing the interrelated

factors of software release planning.

In this chapter, I give background information about the practice of software release

planning itself, and the importance of decision-making process in this practice. I then

outline my motivation and research, using visualization as a supporting tool in this process,

and articulate the research scope of my thesis. Finally, I give an overview of the structure

of this thesis document and its subsequent chapters.

2

1.1. Background and Motivation

Varying models of software development are used in industry, including iterative and

incremental practices, as well as newer agile methodologies. Companies that are trying to

deliver a product work under several constraints (e.g. time, budget, personpower), and

often have to contend with fluctuating and growing sets of customer requirements. Thus,

it is important for large projects to make effective and efficient decisions about the use of

resources—that is, deciding on a development plan to follow: what order features should

be developed, which features should be postponed, how resources should be divided, etc.

The process of structuring and managing project plans to balance between factors such as

stakeholder satisfaction, resource allocation, feature dependencies, etc. is known as

release planning (Amandeep, Ruhe and Standford 2004).

1.1.1. Common Practices in Release Planning

Common practices in release planning include the assessment of plans, resources, releases,

features, and stakeholders. A plan (also referred to as an alternative when referring to a

plan in a solution set containing multiple plans) contains the prioritization of features, the

timing of releases, and the allocation of resources. Features are the different components

or capabilities of the software being released. Each alternative contains a subset of features

grouped into releases representing cycles of development, and requires certain maximum

amount of resources (e.g. budget, hours of labour, risk, etc.) defined by the planner which

are then allocated into each release phase as needed for the implementation of features

(Ruhe 2011). This allocation can be changed to adapt to the needs of the plan. Stakeholders,

in broad terms, are people who have a vested interest in the project which include but not

limited to company officials, members of the development team, to the expected customers

3

or end-users. They vote on feature importance in terms of their priority and their perceived

risk.

The goal of release planning is to find an optimal release plan that balances these factors.

To approach optimality, the decision process must consider conditions that involve

resource constraints and non-trivial properties (e.g. adhering to the core values of the

project stakeholders), which can quickly grow in complexity with even just a few

components (Jantunen, et al. 2011). Human involvement and analysis is therefore required

in order to reach a final decision. For example, release planning methods like EVOLVE II

are meant to be used by project managers (Greer and Ruhe 2004). EVOLVE II consists of

a cycle of modelling, exploration, and consolidation. This approach analyses different

releases, comparing multiple possible arrangements of features based on satisfaction

outcomes. The result is a solution set of algorithmically optimized alternatives. In this

method, a human planner still chooses the best plan within the solution set. To achieve

good results, planners must have a good understanding of the project. In order to gain this

knowledge, Amandeep et al. outlined the six steps comprising release planning (Amandeep,

Ruhe and Standford 2004). These steps are summarized as follows:

Step 1. Characterize and understand: studying and classifying the characteristics of

the project is performed at this step. This includes knowing the amount of resources

available, number of people involved, project scope, quality criteria, etc.

Step 2. Problem definition: identifying the stakeholders and assessing their influence,

and specifying feature requirements is performed in this step.

Step 3. Planning: examining multiple scenarios with variations on parameters such as

effort (development effort, testing effort, etc.), company values, and risk, is

4

performed in this step. The results of this step is then communicated with the

stakeholders.

Step 4. Execution: the plan is executed.

Step 5. Analyse experience: Data collected from Step 4 is analysed to appropriately

direct further development on the software.

Step 6. Package experience and results: The analysis of the data from Step 5 is

documented such that it can be used at a later point in time should a similar scenario

is played.

Before the initial release, planners must examine the plans given by EVOLVE II’s

automated algorithm and find a balance between the information gathered in the early steps

(1–3). These steps are iterative and gathering data (steps 4–6) after the initial release of a

software could better inform the scope of a project in its later releases. This decision-

making process can still be difficult for the planner because there are many variables that

have to be considered, and the trade-offs between the alternatives are not necessarily

derived easily from looking at the solution set as raw data.

1.1.2. ReleasePlannerTM 1

ReleasePlannerTM is an online release planning tool that realizes the EVOLVE II method,

providing planners with a solution set of optimal plans and possibilities. It algorithmically

reduces a multitude of possible plans to a small set of optimal plans (Bhawnani and Ruhe

2005). In ReleasePlannerTM, stakeholders vote on feature priority on a 1–9 scale where 1

indicates the least priority and 9 indicates the highest. Releasing features with high priority

1 http://www.releaseplanner.com

5

votes sooner contributes to positive stakeholder satisfaction, while postponing or shifting

those features back to a later release leads to stakeholder disappointment for a plan.

Stakeholder satisfaction is indicated on a 5-point scale ranging from very excited to very

disappointed, along with surprised and very surprised—neither of which are negative nor

positive, but serve as markers for when an unexpected decision is made in a plan. Surprise

occurs when a feature that has a low priority vote gets released earlier in the plan.

Stakeholder feature points, or SHFP, are defined for each plan based on stakeholder

satisfaction regarding features in conjunction with releases. ReleasePlannerTM also

summarizes the degree of optimality for the plan. If a plan has 100% optimality, then there

is no better plan possible in the sense of achieving a higher stakeholder feature points,

under any given resource and technological constraints (Ruhe 2011).

Data from ReleasePlannerTM can be exported in spreadsheet format closely resembling the

site layout. Important information relevant to release planning is included in this

spreadsheet.

6

Figure 1.1. Sample release planning data in a spreadsheet format. Note that several other spreadsheets are not shown in this figure. Data taken

from ReleasePlannerTM

7

1.1.3. Motivation

As previously stated, the decision-making process involved in choosing the most optimal

plan for a software’s release is not trivial because the inherent trade-offs between

alternative plans are not easily observable. As such, my research interest lies in exploring

answers to the following problems or challenges:

Problem 1. Planners can have different decision-making processes.

If we look at the human model of decision-making (Zeleny and Cochrane 1982) as

a basis for decision-making in software release planning, different planners may

have different methods and preferences regarding their decision-making process.

As such, it is a challenge to support multiple types of decision-making processes.

Moreover, decision-making in software release planning is made complex by

multiple factors and constraints that are interrelated, leading to the Problem 2.

Problem 2. It can be difficult for planners to account for the interrelated factors

of software release planning.

Meticulous examination of these factors is required to make a well-informed

decision in software release planning. While it can be done through examinations

of raw data in spreadsheets (see Figure 1.1).

Problem 3. It can be difficult for planners to compare alternative plans in order

to be able to choose the best one.

This builds from the previous problem in that it involves comparing factors in

several alternative plans rather than just a single one.

8

1.2. Approach

In order to find a solution to the previously stated research questions, my approach is to

explore the use of visualization to support decision-making in release planning. Card,

Mackinlay, and Shneiderman described visualizations as “the use of computer supported,

interactive visual representations of data to amplify cognition” (Card, Mackinlay and

Shneiderman 1999). They also provided several key ways that visualizations can amplify

cognition, including: increasing memory and processing available resources, reducing

information search, enhancing pattern recognition, encoding information in to a medium

that can be manipulated. These cognitive benefits allow visualizations to function as frames

of reference or temporary storages for human cognitive processes (Fekete, et al. 2008).

Hence, visualizations are often used to augment human memory involving tasks that have

a considerable cognitive load.

To further demonstrate the benefits visualizations can have for reducing cognitive load,

visualizations have also been shown to be beneficial to managerial tasks. Lurie and Mason

(Lurie and Mason 2007) compiled a number of visualizations and showed that many of

them “speed up routine analysis tasks by making it easier to see correlations, outliers, and

trends and to make comparisons.” They speculated that visualizations may have managerial

implications that includes efficiencies, cost reductions, improved productivity, new

insights, increased information accessibility, and decision confidence—all of which

outweigh the potential disadvantage of having a complex visualization that requires

learning.

This thesis seeks to apply these benefits of visualizations to support the decision-making

process in software release planning. It describes the design and implementation of a

9

strategic release planning support tool, STRATOS (STRATegic release planning Oversight

Support). STRATOS is a hybrid visualization that visualizes potential plan outcomes and

reveals the decision-making factors for several plans within a single view, making it

possible to compare several plans at once. It visualizes data retrieved from

ReleasePlannerTM, thus complementing an industry-grade tool for release planning.

Furthermore, it is designed to help planners identify patterns in the data, and make sense

of the plans by reframing perspectives, promoting understanding, and communicating

details of the data. My intention is to enhance the decision-making process by empowering

different problem solving strategies and practices.

Overall, this thesis is concerned with how to support planners in choosing an optimal

plan by visualizing the interrelated factors of software release planning. Hence, in the

design and development of STRATOS, I concentrated on the following research questions,

in order from the most straightforward to the least:

Research Question 1. How can a visualization be designed such that it helps

planners see the trade-offs between plans at-a-glance?

Problem 3 implicates that for a visualization to effectively support decision-making

in software release planning, it must simplify the planners’ task of comparing

alternative plans in a solution set. Hence, this thesis include the examination of

existing visualization techniques and re-appropriating them to fit this need.

Research Question 2. How can a visualization be designed such that it visualizes

the interrelatedness of the different factors of release planning?

10

Problem 2 implicates that for a visualization to effectively support decision-making,

it must facilitate the planners’ task of accounting for the interrelated factors of

software release planning. Exploring how to provide easily identifiable visual

elements and interactivity is therefore one of the focus of this thesis.

Research Question 3. How can a visualization be designed such that it supports

multiple types of decision-making processes among different planners?

Problem 1 implicates that to effectively support decision-making in software

release planning, visualizations must be able to support different types of decision-

making processes.

1.3. Context and Scope

This thesis is mainly concerned with the exploration of the use of visualization in

supporting the decision-making process

involved in software release planning. Figure 1.2

illustrates the scope of my research within the

intersection of the following domains of study:

(1) Human–Computer Interaction (HCI) – which

is concerned with the design and development of

interaction between humans and technology. (2)

Information Visualization (Infovis) – which is

concerned with helping people understand data

through the use of visualizations. Lastly, (3)

Software Engineering Management –

Figure 1.2. The scope of this thesis

lies in the intersection of HCI,

Infovis, and Software Engineering

Management.

11

particularly in systematic management, which is concerned with ensuring that a software’s

market release is well-planned and executed.

1.4. Contributions

This thesis contributes the following:

Thesis Contribution 1. STRATOS, a hybrid visualization that visualizes potential plan

outcomes and reveals the decision-making factors for several plans within a single

view, making it possible to compare several plans at once.

Thesis Contribution 2. The qualitative evaluation methodology employed to study

how planners used STRATOS and possibly similar visualizations

Thesis Contribution 3. The results of the study of STRATOS and its possible

implications for other visualizations supporting decision-making in software

release planning.

1.5. Research Acknowledgements

The work I have done for this thesis involves multiple collaboration with other researchers

including fellow students, Tiffany Wun and David Ledo; David is a fellow master student

who helped in the conception and early iterations of STRATOS, and Tiffany is an

undergraduate research assistant I supervised who helped during the final iteration of the

project and the qualitative study employed in this thesis. I also collaborated with release

planning domain expert, Dr. Guenther Ruhe; and received much needed guidance from my

supervisors, Dr. Anthony Tang and Dr. Sheelagh Carpendale. Nevertheless, I wrote this

thesis as an account of my personal perspective over the collaborative work which I have

12

led. Henceforth, I am using the first-person singular pronoun—I, my—in reference to work

done for the completion of this thesis.

1.6. Document Overview

In this Chapter, Chapter 1 – Introduction, I presented the background information for the

motivation of this thesis, and the approach I employed in trying to support decision-making

in software release planning. The remainder of this document is divided into four chapters

with the following descriptions:

Chapter 2 – In Perspective. I present previous work in software development, release

planning, and information visualization that puts my research in perspective. I also present

the visualizations that inspired the design of STRATOS.

Chapter 3 – STRATOS: Design and Implementation. I elucidate the design guidelines of

STRATOS, and then describe the hybrid visualization developed to instantiate these

guidelines.

Chapter 4 – STRATOS: Study. I describe the qualitative study employed to examine how

a visualization like STRATOS could support decision-making in release planning. I then

present the results and elaborate on the implications it may have on the design of similar

visualizations.

Chapter 5 – Conclusion. I summarize the contributions of my research and explore some

avenues for future work.

13

Chapter 2
IN PERSPECTIVE

As stated in the previous chapter, visualizations have been used to support tasks that put

considerable mental load on people (Fekete, et al. 2008). It is not surprising therefore, that

there are many visualizations often used in software engineering. Moreover, previous

research has been done on using visualizations to help in different aspects of software

development and management.

In this chapter, I present several previous work in software development and information

visualization that places my thesis in perspective. I describe standard visualization

techniques that are currently used in software development and visualizations for software

management, and note how my work builds on these. I then write about the visualizations

I took inspiration from in creating STRATOS.

14

2.1. Visualizations for Software Development

At the inception of this thesis, I looked at how visualizations are currently being used in

software development—starting from common methods that simply show software

architecture to methods that show factors that affect how software development is managed.

Examining these methods allowed me to conceptualize a hybrid visualization that supports

the decision-making process of release planning, STRATOS, built from my understanding

of the strengths and weaknesses of each.

2.1.1. Visualizations of Software Architecture

In software engineering, one practical use of visualization is to provide engineers with a

standard way of visualizing a design or architecture of a software. The Unified Modelling

Language, or UML (Rumbaugh, Jacobson and Booch 2004), is an umbrella of diagram

drawing techniques commonly used by software engineers and developers to capture and

portray requirements during the software development process. It provides them with

constructs to build object-oriented models that are as close as possible to real-world models

(France, et al. 1998). These constructs are visual components used in creating a variety of

diagrams that show structure (such as class diagrams, Figure 2.1) and behaviour (such as

sequence diagrams); thus, allowing software engineers and developers to see the software

architecture and model user interaction.

The practicality of UML primarily lies on its simple yet effective visual depiction of

software architecture. Furthermore, because it is standardized, software engineers and

developers can use the diagrams to communicate ideas with one another. However, because

15

UML is specifically designed to visualize software architecture, it does not provide

adequate constructs to visualize components of software management (resources,

development scheduling, etc.). Hence, one must look for other methods in order to visualize

software release planning factors.

While UML diagrams are inadequate for visualizing the factors of software release

planning, it laid out one fundamental decision in the development of STRATOS—that is, the

visualization must contain visual constructs that are close to real world models of release

planning, making them identifiable to planners who have experience with UML.

Figure 2.1. An example of a UML class diagram. Each box is a representation of a class—

typically an object, as per object-oriented programming—divided into three parts: the class name

(top), its attributes (middle), and its methods (bottom). It can also show relationships between

classes, in this case for example, the SolutionSet class can have one or more Plans, but a Plan can

only be in one SolutionSet (as portrayed by edges connecting the classes).

16

2.1.2. Visualizations of Development Schedule

Aside from visualizing components of software architecture, visualizations are also

extensively used in software engineering to visualize the development schedule for

software. Unlike the visualization techniques I presented in Section 2.1.1, these

visualizations show not only the software structure, but also the process of how it will be

developed. One such visualization, the Gantt chart (Clark and Gantt 1923), allows

software developers to visually chart the hierarchical break down of work over software

components into different activities during development (see Figure 2.2). Thus, it is used

for planning and directing the flow of personpower and time into activities and tracking

work progress, effectively helping development teams in executing plans with minimal

confusion.

Figure 2.2. An example Gantt chart showing progress of work over a project. In this example

chart, the current day is denoted by the yellow bar (day 11), the pink bar shows the overall

progress made on the project, and the blue bars show progress on separate activities. The Project

is broken down into five activities: A, B, C, D, and E, and shows that C is dependent on A’s

completion, D is dependent on B, and E on D. The chart also shows that progress on activity D is

delayed.

17

Kanban (Anderson 2010), literally the Japanese word for billboard, is another method

used in software development that visualizes the workflow of a development team. It

depicts just-in-time development processes, where a feature is implemented only when

there is an explicit customer request for it. As a consequence, development is represented

as a large number of small deliverables. These deliverables are depicted with cards (called

Kanban cards) that can be moved along a board signifying where it is in the development

cycle. As seen on Figure 2.3, Kanban boards are typically broken down into to do, in

progress, and finished work flow bins, while Kanban cards are selected from a backlog of

deliverables. The cards are then moved along the board as they are designed, developed,

and tested, until they are finished and released to market. It should also be noted that other

development teams can change the details of the Kanban board according to their team’s

needs (e.g. they can add more details to the in progress bin such as requirements gathering).

Figure 2.3. An example Kanban board. Each coloured square is a Kanban card deliverable (tasks,

bugs, and expedited tasks). As illustrated at the bottom, the flow of a Kanban board typically

flows from left to right: a deliverable starting at the to do pile is moved on to the in progress pile

after a member of the development team starts working on it (a). After finishing the deliverable, it

is then moved to the finished pile (c). Expedited tasks (b) take priority and can interrupt a task

that is already in the development line.

18

This visualized workflow allows a team to track and analyse their progress to find ways to

dynamically improve their schedule.

Both the Gantt chart and Kanban are effective methods of visualizing a team’s development

progress. If used correctly, both ensure the proper use of time. However, while both

methods account for managing development time, they are inadequate for managing other

resources (e.g. budget) and factors (e.g. stakeholder happiness) that are important in

software release planning. This suggests that both rely on a pre-existing, well-thought out

plan containing the right amount of money, time, and personpower for the development of

prioritized features.

Putting these in perspective, I envision STRATOS to be a visualization tool that could

complement these methods. This is because my research concentrates on supporting the

decision-making process to come up with a plan before the development begins (and

possibly when a change in plan is necessary). I focus on visualizing software release

planning factors such as budget and development effort as opposed to focusing on the

development progress.

2.1.3. Visualizations of Software Release Planning Factors

Release planning tools like ReleasePlannerTM provide basic visualizations such as bar and

line graphs. While I am not trying to undermine their utility, these basic visualizations are

typically focused on simple bivariate relationships. Typically, the complex, multivariate

relationships inherent among the factors of software release planning, are not easily

observed through these basic visualizations. The goal of introducing visualization to

software release planning is therefore often the same: to increase the transparency of

19

solutions, showing why certain plans are suggested, and what the trade-offs look like

between alternatives (Amandeep, Ruhe and Standford 2004).

Several authors have explored using different visual representations to support release

planning; each visualizing specific factors in order to help planners make key decisions in

managing the development or release of software.

2.1.3.1. Analysing Features

In software release planning, choosing which features should be implemented within a

release is an integral part of its decision-making process. One way of doing this is to

analyse whether a feature is truly integral to the success of the software even if the

software’s scope changes. As Wnuk et al. (Wnuk, Regnell and Karlsson 2008) stated in

Figure 2.4. The Feature Survival Chart (FSC) reproduced from Wnuk, Regnell and Karlsson.

© 2008 IEEE.

20

their research, development teams in industry are usually faced with scope changes from

stakeholders and customers—when the scope of a software changes (typically after a

milestone), development teams may find that previously planned features are no longer

within the scope of the software. As such, it would be a waste of effort to still develop out-

of-scope features for future releases. Hence, Wnuk et al. explored how feature life cycles

can be represented in a two dimensional graph. Their goal was to help development teams

in analysing requirements to find out whether or not certain features are still worth

implementing for future releases of the software. They contributed two graphs: Feature

Survival Chart (FSC) and Feature Growth Chart (FGC).

The feature survival chart (FSC) is a visualization of features and how the changes in the

scope of the software affect them. Figure 2.4 shows an example of an FSC containing 531

features (Y-axis) across 9 months and four milestones (X-axis, M1–M4) when the scope

of the software is updated. In this figure, the features are sorted by how long they remained

in scope, with the ones on top being the longest survivors. Because the green lines depict

features that remain in scope, proper placement of development effort can be seen

whenever the graph appears greener at the most recent milestone (more features remained

within scope). On the other hand, development effort could be considered as wasted should

21

the graph appear redder at the most recent milestone (more features are no longer within

scope).

The feature growth chart (FGC), as seen on Figure 2.5, shows an overview of the full scope

of the project. FGCs allow development teams to see trends as projects progress. In this

example, the overall trend is that the number of out-of-scope features is increasing while

the number of in-scope features is decreasing.

Wnuk et al. claimed that both FSCs and FGCs allow development teams to “construct

valuable process efficiency measures” to improve requirements gathering and to avoid

placing effort on developing features that will not survive a scope change. Furthermore,

they have shown that both of these visualizations are useful for analysing the implications

Figure 2.5. The Feature Growth Chart (FGC) reproduced from Wnuk, Regnell and Karlsson.

© 2008 IEEE.

22

of decisions made on the software scope. However, because they both visualize data about

the progress of features that are already implemented, they only show information on

whether a reassessment of requirements is needed. They are not intended for predicting

whether features will survive or become out-of-scope. Furthermore, because they focus on

feature requirements, they only aid planners in deciding which features should be

implemented. Much like the previously stated visualization methods, FSCs and FGCs do

not support the visualization of other factors such as budget and development effort.

2.1.3.2. Analysing Requirements Interdependency

Carlshamre et al. (Carlshamre, et al. 2001), in their work on understanding the

interdependencies of requirements in software release planning, illustrated a way to

represent feature dependencies (see Figure 2.6). This included visualizing coupling

(features that rely on each other), precedence (when a feature is required by another), cost,

and value through a graph resembling a directed node-link graph. This is useful for showing

functional dependencies for planning the course of development. However, this

visualization does not account for the broader external factors that impact release planning

(e.g. resource allocation and stakeholder preferences). This may be attributed to the fact

that this research only used visualization for preliminary exploration, and the researchers

admitted that further investigation is needed to examine the utility of this approach.

23

2.1.3.3. Analysing Risks

Feather et al. (Feather, et al. 2006) provided several representations that showed the

requirements, risks, and risk options for the planning of a release. Their tool provides

different representations and visualizations for: comparing risks, exploring the solution

space as a trade-off between cost and benefit, and decision-making. Figure 2.7 shows a few

of the basic, straight-forward visualizations that they used for each specific risk data set.

These visualizations were described as self-contained and separate, with no mention of

whether or not they are able to communicate with each other through Infovis techniques

such as linking and brushing (Buja, et al. 1991). While the researchers claimed that each

visualization was sufficient, switching between views to in order to accomplish multiple

Figure 2.6. An example visualization of requirements interdependencies. Reproduced from

Carlshamre et al. © 2001 IEEE.

24

tasks can be cumbersome. This is because view switching relies on people mentally

integrating information across several views to find answers to their questions.

This prompted me to find other ways of presenting data that requires the least view

switching, if none at all. Hence, in designing STRATOS, I began with the premise that

several variables (the factors of software release planning) need to be visually accessible

simultaneously to reduce the burden of view switching.

25

a. Bar chart of risk

b. Bar chart comparison of risks

c. Range chart of risks

d. Treemap of requirements

e. 2D chart of risks
f. Kiviat chart of design risks

g. Topology of needs
h. Topology of needs coupled with

bar charts

Figure 2.7. Several visualizations showing risks assessment in software release planning. Each of

these visualizations are separate views designed for specific tasks during risk assessment in

release planning. Reproduced from Feather et al. © 2006 IEEE.

26

2.2. Visualizations that Influenced the Design of STRATOS

Based on what I have learned from the previously given visualizations, I examined pre-

existing visualizations that could potentially show the interrelated factors of software

release planning within a single layout. The approach I chose is similar to what Henry et

al. (Henry, Fekete and McGuffin 2007) employed in the creation of NodeTrix—where they

combined the advantages of two pre-existing visualizations into a hybrid visualization.

Thus, I studied several visualization candidates to create STRATOS. The ones that were

eventually used are described as follows.

The first visualization is the Sankey diagram (Sankey 1896) which was based on Charles

Joseph Minard’s drawing of Napoleon’s Russian Campaign of 1812 (see Figure 2.8)―to

which he claimed to promptly convey “the relation not given quickly by numbers” (Tufte

1983). Sankey diagrams have been used for depicting energy and material balances of

complex production systems such as steam-engine production (Sankey 1896) (Schmidt

Figure 2.8. Charles Joseph Minard’s diagram depicting Napoleon’s Russian Campaign of 1812,

which Edward Tufte considers to be “the best statistical graphic ever drawn” (Tufte 1983).

27

2008)—in which they were proven to be very useful in planning how to properly use finite

resources. Reihmann et al. furthered this development by making Sankey diagrams

interactive and useful for planning alternative flow scenarios (Reihmann, Hanfler and

Froehlich 2005). This can be used to depict the flow of resource allocation within a plan—

a release planning factor that is usually not depicted by previously mentioned visualizations.

Thus, it is an appropriate candidate for the main visualization of STRATOS.

While the Sankey diagram is effective for depicting resource consumption, software

release planning data has other properties that have led me to examine other visualizations

as well. The second visualization I examined is Parallel Coordinates (Inselberg and

Dimsdale 1990). Parallel Coordinates are graphical representations of multi-dimensional

relations. Each axis of a parallel coordinate chart represents a dimension of data with two

or more dimensions. For example, Figure 2.9 shows the eight planets of our solar system

with the blue lines connecting them to their minimum, mean, and maximum surface

temperatures.

One major aspect of the data I am concerned with is that it is highly comparative,

containing information about several plans, releases, and features. Features, in particular,

Figure 2.9. An example parallel coordinate chart showing the eight planets of our solar system

and their minimum to maximum surface temperatures.

28

remain constant among all of the plans in a solution set, with the difference being their

priorities. This makes such data multivariate which can easily be visualized with parallel

coordinates, making the visualization another appropriate candidate for the design of

STRATOS.

The last visualization candidate is graph tree notation (Feiner 1988). It is a graphical

layout that many people are familiar with—I chose the graph tree notation to visualize the

hierarchical nature of software release planning data (see Figure 2.10).

These three visualizations—Sankey diagrams, parallel coordinates, and graph tree

notions—served as main influential pieces of the hybrid visualization, STRATOS, developed

to support decision-making in software release planning.

2.2.1. Parallel Sets

Since the development of the hybrid visualization used in STRATOS, a similar visualization

technique called parallel sets (Kosara, Bendix and Hauser 2006) has since been brought

up to my attention. Parallel sets, as seen in Figure 2.11 is a visualization which combines

the pre-existing technique found in parallel sets and of displaying frequencies. The authors

of this visualization specifically designed this visualization for the purpose of displaying

Figure 2.10. An example graph tree notation showing the hierarchy of a mock release plan.

29

categorical information, treating all of the

dimensions as visually independent.

Moreover, because this visualization

focused on portraying categories, parallel

sets have been modified to depict non-

contiguous variables as its dimensions

(with an option to show continuous

dimensions).

While parallel sets bears a striking

resemblance to the visualization approach

presented in this thesis, there are some key

differences. The visualization employed in

STRATOS is designed with a more practical

than theoretical purpose; that is, it is for the

comparison of different plans in software release planning to support planners in choosing

an optimal plan. As such, the dimensions used in STRATOS are alternatives of each other

rather than different categories. Rather than splitting frequencies into different categories,

the flow lines in STRATOS is split according to their allocation to the different releases and

features that require them. I highlight more details of the differences between the

visualization techniques used in parallel sets and STRATOS in this thesis’ Chapter 3 Section

3.3.4. Nevertheless, parallel sets has been shown to help its users with identifying

relationships in the data with fair ease. Because STRATOS’ visualization is similar, this

Figure 2.11. An example parallel sets showing

the frequency distribution of families to

different dimensions (type of detergent they

use, their income, etc.) reproduced from Kosara

et al. © 2006 IEEE.

30

arguably supports the idea that the visualization this thesis offers could help planners with

identifying relationships in release planning data.

In the next chapter, I present STRATOS, describe its hybrid visualization and outline the

design guidelines I employed in its design.

31

Chapter 3
STRATOS: DESIGN AND IMPLEMENTATION

In this chapter, I highlight the process I underwent in designing STRATOS to provide

planners with decision-making support during software release planning. I outline the

seven design guidelines I followed to ensure that the visualization provides decision-

making support. I then present the end result, a hybrid visualization technique that

combines the flow visualization of Sankey diagrams and the multivariate visualization of

parallel coordinates within a tree layout. I describe its visual representation and the

interaction techniques it employs. Lastly, I explain the method with which the visualization

is drawn algorithmically.

The design process also involved frequent and iterative feedback from a release planning

expert, Dr. Guenther Ruhe2; and it is owing to this collaboration that I am able to meet the

requirements of supporting decision-making in software release planning.

2 http://ruhe.cpsc.ucalgary.ca

32

Figure 3.1. The hybrid visualization used in STRATOS. The visualization shows a solution set from ReleasePlannerTM containing several

alternative plans to choose from within a single, unified layout, and does not require view switching.

33

3.1. STRATOS: Definition

As stated in the introduction (Chapter 1, Section 1.2), STRATOS—whose name comes from

a portmanteau of Strategic software release planning Oversight Support—is a visualization

tool designed to support the decision-making process involved in software release planning.

Complementing ReleasePlannerTM, STRATOS visualizes the important factors of release

planning within a single, unified layout (see Figure 3.1). This is to ensure that all of the

relevant factors are available to the planner at-a-glance. Furthermore, Stratos was

implemented with interactive brushing (Buja, et al. 1991), allowing every component to

interactively reveal relationships within the data.

3.2. Design Process

The main methodology used in developing STRATOS’ is a design study methodology

(Sedlmair, Meyer and Munzner 2012). This method follows a framework of nine stages

within three top-level categories (shown in Figure 3.2) ensuring that one gets the most out

of their collaboration with the domain experts whom one is collaborating. I chose to apply

Figure 3.2. The nine stages of design study methodology categorized into three top-level

categories. Reproduced from Sedlmair, Meyer, and Munzner © 2012 IEEE.

34

this methodology in developing STRATOS to gain sufficient knowledge of software release

planning practices and the requirements for supporting the needs of my target end-users

(planners).

Precondition. This level of the framework contains the stages in which visualization

designers learn about the topic of the work or process they hope to support, winnow (or

carefully select) possible collaborators, and cast collaboration roles with the domain

experts on the topic. Hence, during these stages of the design study, I went over a review

of the literature, finding ones that placed my thesis in perspective (as presented in Chapter

2). I worked closely with a domain expert on software release planning (both in practice

and research), Dr. Ruhe, who also spearheaded the development of the release planning

tool, ReleasePlannerTM, that provides the data visualized by STRATOS.

Core. This level of the framework contains the stages in which visualization designers

discover the challenges and problems they need to overcome, design the abstraction of data,

and implement a solution. Hence, during these phases, I asked the help of the domain expert

to give considerable insight into the field of software release planning and the decision-

making process that takes place. He helped identify important patterns and relationships

between the factors of software release planning that are not immediately evident—

providing design guidance for STRATOS. This prompted me to create a design that

specifically highlights these relationships and patterns which are not easily seen with

current traditional tools for release planning or basic visualizations. It is also during these

stages in which I sought to connect my research questions (Section 1.2) to my design goals.

For example, the first question “how can we design visualizations that support multiple

types of decision-making approaches among different planners?” (Research Question 1)

35

is based on my assumption that planners are individuals with different approaches to

decision-making. This assumption is based on a model of human decision-making in which

there are two basic approaches: the outcome-oriented approach and the process-oriented

approach (Zeleny and Cochrane 1982). Decisions from an outcome-oriented approach are

based on the predicted outcome, seeking answers to what or when questions. On the other

hand, decisions from a process-oriented approach are based on the understanding of how a

good result can be achieved. This knowledge has driven the design of STRATOS to consider

supporting both approaches.

Analysis. This level of the framework concludes the design collaboration through reflection.

During the analysis phase, I performed a qualitative evaluation of STRATOS involving

participants with knowledge of software release planning. I studied and reflected upon the

ways they interacted with the visualization—noting key observations that, to a certain

extent, allowed me to validate the utility of STRATOS and its design guidelines.

The remaining sections of this chapter provide more details about the design and

implementation stages. The deployment and reflection stages are discussed in Chapter 4.

3.2.1. Design Guidelines

Recall that my thesis explores how to support planners in choosing an optimal plan by

visualizing the interrelated factors of software release planning. Hence, seven design

guidelines were developed to be followed in the design of STRATOS. These guidelines are

the end result of brainstorming and design sessions with other researchers in HCI and

Infovis—taking guidance from the requirements and other information gathered during

discussions with the domain expert. Furthermore, the development of these guidelines

36

included consideration of the related literature and processes presented in Chapter 2, and

were improved by the reflecting upon the results the qualitative evaluation of STRATOS.

Arguably, these guidelines have a potential to be useful in designing future similar

visualizations that aim to support decision-making in software release planning.

The underlying design goals are as follows:

Design Guideline 1. Consider as many as possible factors.

Knowing that the conditions of multiple factors of software release planning is

important for planners to be able to make good and well-informed decisions, the

visualization design must take into account visualizing as many factors as possible.

Design Guideline 2. Provide a holistic view.

Visualizations for supporting decision-making in software release planning should

not only be able to show the factors but must also be able to show how they relate

to one another. A holistic view allows decision makers to consider most of the

factors with considerable ease rather than trying to do so while switching between

views.

Design Guideline 3. Support comparison among alternative plans.

Comparing trade-offs among possible alternative plans is at the heart of decision-

making in software release planning. Therefore, plans must be shown as distinct

visual elements within the visualization to help planners easily identify them as

alternatives to one another. At the same time, consistency across representations

should be employed such that they could be visually compared. At-a-glance

comparison of alternative plans could effectively enable this comparison through

37

the use of visual variable that emphasize the major differences among alternative

plans.

Design Guideline 4. Support multiple decision-making strategies.

Different planners often have different approaches on deciding what the best

alternative plan is in regards to their project’s goal. An interactive visualization

should allow planners to explore the data according to their own preferences; by

letting them find possible outcomes (outcome-oriented approach) and or by helping

them better understand a given solution (process-oriented approach).

Design Guideline 5. Support details-on-demand (Shneiderman, The Eyes Have it: A

Task by Data Type Taxonomy for Information Visualizations 1996).

While visually conveying information allows planners to do simple comparisons

at-a-glance, they should still be able to access detailed information such as the

numeric values of the visualized data. This could help planners to accurately distil

information that look similar when visualized.

Design Guideline 6. Minimize required interactions.

Minimizing interaction over-head by avoiding excessive clicking, selecting, etc.,

while still providing full visualization and data access will make interacting with

the visualization more pleasant. This could lead to better acceptance of the tool,

making it easier to be integrated with other support tools or methods that the

planners may already using.

Design Guideline 7. Support individual and collaborative exploration of the data.

Release planners may explore alternative plans individually or in a group, such as

when having a meeting. Hence, there is an advantage to allow planners—either

38

individually or as a group—to explore the visualization simultaneously according

to their own practices and as a communicative tool. This could be possible by

designing the visualization to run over a large screen display for many people to

see. Another way of doing this is to provide awareness between planners who are

not collocated (e.g. creating a web-based application that allows the exchange of

information between multiple clients).

In summary, Design Guideline 3 call for the use of distinct but identifiable visual elements

to allow comparison of alternative plans at-a-glance, in addition, Design Guideline 6 calls

for minimizing the interactions required for comparing plans. Thus, these guidelines

provide a solution to Research Question 1. Design Guideline 2, as well as 1 and 5,

concentrates on providing a holistic view of the factors paired with details-on-demand.

Careful choosing of visual elements and layouts enables the visualization to depict the

interrelatedness of the factors of software release planning; thus, providing a solution to

Research Question 2. Lastly, Design Guideline 4, as well as 1 and 5–7, concentrates on

what aspects of the data should be visualized and how interactions should be supported.

By taking as many factors into consideration, and allowing for interaction to begin

anywhere the planner wishes to, these guidelines potentially enable multiple decision-

making strategies and afford a freedom-of-choice. As such, they are means of finding a

solution to Research Question 3.

39

3.2.2. Creating the Hybrid Visualization

 As stated earlier, I followed the guidelines mentioned in the previous subsection to design

STRATOS as a tool for decision support. Most importantly, some of the guidelines

(specifically design guidelines 1–3) helped dictate how the abstraction of data should be

done. The approach I used to provide a holistic view (Design Guideline 2) is through a

hybrid visualization that brings together several aspects of existing visualization techniques.

As seen on Figure 3.3, I turned to the technique used in UML class diagrams (Chapter 2,

Section 2.1.1) to choose how the different factors of release planning should be abstracted

(Design Guideline 1). Based on studying the data from ReleasePlannerTM, my knowledge

of software release planning, and advice from the domain expert, I chose plans, releases,

and features as the main visual elements of my visualization, with other factors such as

resources and stakeholder satisfaction distributed among them. Assessment of risk factor

has been left out as a matter of scope, but in principle, it can be integrated into the

visualization as well.

Further examination of the data reveals that certain visualizations are best suited to

represent them. Figure 3.4 on the next page shows an overview of my observations about

Figure 3.3. A UML diagram representation of the structure of the basic release planning factors.

40

software release planning data which provided the basis for how I combined existing visual

representations to create the hybrid representation of STRATOS.

In the next section, I describe the visual representation of STRATOS in detail.

Figure 3.4. Some major observations about the data which shows the basis for STRATOS’ design.

41

z

a

b

c

d

e

Figure 3.5. A view of STRATOS in which the middle alternative plan is highlighted. (a) Legend for the colour representations of resources and

excitement levels. (b) The boxes representing the alternative plans within the solution set. (c) The flow diagram visualizing the flow of resources

into (d) the alternative plan’s releases, and eventually to (e) the features.

42

3.3. Visual Representation

As previously mentioned, STRATOS is a hybrid visualization that integrates Sankey

diagrams (Sankey 1896) and parallel coordinates (Inselberg and Dimsdale 1990) in a forest

or multiple tree view (Feiner 1988). Figure 3.5 shows an overview of STRATOS. Starting at

the top right hand side (Figure 3.5.a), there are two legends: one for the set of colours

representing the resources and another for those representing the excitement levels of

stakeholder satisfaction.

3.3.1. Plans

Each plan depicted in STRATOS can be thought of as a hierarchy containing resource

consumption, releases, and features. The overall view is a small forest with one tree

representing each alternative plan. The hierarchy shows plan headers at the top (Figure

3.5.b), releases in the middle (Figure 3.5.d), and the set of features at the bottom (Figure

3.5.e). Since all alternative plans contain the same set of features—though they have been

given different priorities—the trees representing the alternative plans also share the same

set of features. This sharing of the same set of features can visually suggest that the plans

are alternatives for the same software.

For each alternative plan, a header containing a bar chart representing stakeholder

satisfaction is depicted at the top of the hierarchy. As shown in detail in Figure 3.6.a, the

bar chart is composed of seven bars corresponding to each level of excitement from very

excited to very disappointed, including surprised and very surprised (for more information

on these excitement levels, see Chapter 1, Section 1.1.1). These excitement levels are

further summarized with the stakeholder feature points to an overall degree of optimality

43

for the plan. This is represented by the white bar located just beneath the bar chart (Figure

3.6.b).

44

Figure 3.6.
Header of one alternative plan tree,

showing (a) stakeholder excitement

levels, and (b) the stakeholder feature

points and degree of optimality. (c)

Resource flow.

 a

 b

 c

 a

 b

 c

 d

Figure 3.7. The flow diagram shows the allocation of resources as (a) the

initial allocated amount of resources, (b) the actual amount needed (for

budget). (c) Gaps in the incoming re-sources mean that the release needs more

of that resource, while (d) gaps in the outgoing resources mean it needs less of

that resource to implement the features within it.

45

In Figure 3.6.c, the initial amount of available resources is shown (blue: budget, light blue:

design effort, pink: development effort, and red: testing effort). The flow represents the

resource allocation among plans—perhaps one of the more crucial factors considered in

decision-making—with the thickness of the flow mapped to the available (or required)

amount of the resource it represents. The flow of resources shown from the plan to the

releases and from the releases to the features (Figure 3.5.c) function similarly to parallel

coordinates where plans, releases, and features are the axes.

3.3.2. Releases

In the data visualized in Figure 3.5 (and shown in detail on Figure 3.7), the middle plan

contains three releases: Release 1, containing the set of features to be released at first launch

of the software; Release 2, containing the set of features to be released at a later time,

through a patched update; and Release 3, containing the remaining subset of features which

are postponed due to resource constraints. Hence, as seen on Figure 3.7, Release 3 does not

receive any incoming resources. Each release is represented with a horizontal bar labelled

with the release’s number with its width corresponding to the total amount of resources

needed to implement all of the features included in the release.

Figure 3.7.a shows the flow of resources into the three releases within an alternative plan.

The flow visualization flowing into the release shows the amount of resources allocated

for the release, while the flow visualization flowing out of the release shows the actual

amount of resources required to implement the features in that development cycle (see

Figure 3.7). Here, planners can see discrepancies between the planned resource allocation

and the actual required resources (see Figure 3.7.c and Figure 3.7.d).

46

3.3.3. Features

At the lower part of visualization, the features of the software are listed (shown in Figure

3.8.a). This list of features works as a stacked bar chart where each feature is represented

by a stacked bar. The height of the white bar (Figure 3.8.b) represents the amount of

resources the feature requires (i.e. the longer it is, the more resources the feature needs),

while the height of the blue bar (Figure 3.8.c) represents the consolidated stakeholder votes

on the priority of the feature. The breakdown of these votes per stakeholder can be seen on

the tooltip of the feature (Figure 3.8.e).

Figure 3.8. (a) Features are represented by a stacked bar graph at the bottom of the visualization.

The stack shows (b) the amount of resources the feature requires and (c) its stakeholder votes

regarding its priority. Clicking on the feature shows (d) dependent features. (e) Tooltip displaying

detailed information about the feature including the breakdown of its stakeholder votes.

a

b

c
d

e

47

As stated earlier in Section 3.2.2, the factor of risk has been left out of the scope of STRATOS’

visualization. However, as stated in Chapter 1 Section 1.1.1, stakeholders in

ReleasePlannerTM also vote on their perceived risk factor of a feature, as such, this risk

value could also be included in this representation of a feature by adding in another bar to

the stack representing the risk factor. The overall risk of the plan can be added as category

to each of the plan header (much like the representation of the stakeholder feature points).

In its current iteration, the ordering of the features through the x-axis is based on an

ascending order of feature IDs. Other logical ordering of the features could be considered.

For example, sorting methods (either ascending or descending) based on their required

resources or on their stakeholder priority votes, and binning methods such as clustering the

features closer to the releases they get implemented in to lower the number of overlapping

flow lines.

When comparing a plan or a release, amber dots appear at the bottom of some features’

stack (as seen on Figure 3.8) signifying the number of plans or releases it belongs to among

those that are being compared. For example, when two releases are highlighted and

compared, one amber dot under a feature means that the feature belongs to only one of the

highlighted releases, while two dots means it is in both.

3.3.4. Comparison with Parallel Sets

As stated in Chapter 2 Section 2.2.1, the visual representation presented above bears a

striking resemblance to parallel sets. As noted earlier, parallel sets is similar to STRATOS in

that they both take the idea behind parallel sets and extend on it. The key differences

between the visualization techniques are outlined below:

48

Key Difference 1. Depiction of discrepancies in the flow of resources.

STRATOS, as described in Section 3.3.2, allows the planner to examine

discrepancies regarding the allocation of resources in a release. As such, the

visualization was purposefully designed to add gaps between the different flow

lines should a discrepancy in the flow occur, something that parallel sets do not

account for because it accounts for frequencies.

Key Difference 2. The tree layout of STRATOS.

STRATOS, in aiming to provide a distinct but identifiable visual representation for

plans, has been designed to emphasize the hierarchical nature of the data, and

automatically places the releases under the header of the alternative plan they

belong to. This can arguably be reproduced by manipulating the dimension axes of

parallel sets, however it is not done so automatically.

Key Difference 3. The feature representation of STRATOS.

As shown in Section 3.3.3, the feature visual element encodes a value on its height.

In parallel sets, the height of the box representing a dimension do not encode any

value in particular.

3.4. Interaction

Through interaction, the planner can have access to all the details of the data. STRATOS was

designed such that a planner can begin interacting anywhere in the visualization. This gives

the planners freedom and flexibility to appropriate the tool to their own approach to

decision-making (Design Guideline 4). For example, they could begin examining the

49

features first (bottom–top approach), or start examining the stakeholders’ excitement level

first (top–bottom approach). Interacting on each visual element shows a tooltip that

provides more details about the data it represents thus supporting details-on-demand

(Design Guideline 5). Furthermore, interacting directly with the visual elements was

implemented, eliminating the need for menus and other similar techniques (Design

Guideline 6). For example, to find the features scheduled to be implemented within a

certain release, a planner simply needs to brush over the release rather than having to go

through a menu and selecting a show features command. To describe the different

interactions a planner can do while using STRATOS, this section goes over each interaction

from a top to bottom approach regarding the different parts of the visualization. To

facilitate ease of use when using STRATOS in a group setting (Design Guideline 7), it was

intended to be usable on large screen displays. As such, the interactions described in this

thesis are based off touchscreen interfaces (e.g. SMARTboard); hence, basic touch

interactions such as tapping and pressing and holding are mentioned. On a traditional

desktop environment however, the former maps to clicking, while the latter maps to

hovering. In addition, STRATOS was implemented as a web application such that it can be

scaled to provide support of non-collocated collaborations.

At the top of the visualization, tapping an alternative plan highlights the flow of resources,

releases, and features related to that alternative plan (as seen on Figure 3.5), with the middle

alternative being highlighted). Tapping again deselects the alternative plan, removing its

highlight. Pressing and holding (for less than a second) on an alternative plan shows a

tooltip containing the stakeholders and their corresponding weights.

50

The same interaction also applies to the releases in the middle of the visualization (Figure

3.5.d). In this case, the highlighted elements will be all the features that belong to that

release, the header of the alternative plan the release belongs to, and the flow of resources

coming in and out of the release (shown in Figure 3.9). Planners can highlight multiple

releases from different alternative plans at once to compare them (e.g. they could look at

the differences of two releases regarding the features they implement). Pressing and

holding shows a tooltip containing the numeric amount of resources the release requires

and the amount of resources allocated to it (Figure 3.9.c). Tapping on a release puts it in

focus until it is tapped again.

Figure 3.9. Selecting the same release number within two alternative plans allows a planner to

visually compare them. In this example, both Release 1 of Alternatives 1 and 2 are selected,

highlighting their resource allocations and the features included in both (a) or just one (b). (c)

Tooltip containing detailed information about the release.

a b

c

51

Features are highlighted from the bottom–up. As shown in Figure 3.10, tapping on any of

the features highlights all of the releases to which the selected feature belongs to within all

alternative plans. It also highlights the stacked bar graph representing the amount of

resources it requires and the stakeholder votes it received. Pressing and holding on the

feature brings up the tooltip containing details about the feature (details about this tooltip

is discussed in section 3.3.3 and shown in Figure 3.8.e). Tapping on a feature reveals its

dependent features should they exist, and—as with alternative plans and releases—puts it

in focus until it is tapped again. The dependent features will be moved slightly downwards

and be connected by a line linking them to the feature upon which they depend (shown in

Figure 3.10).

Other interaction methods are also implemented to improve STRATOS’ usability. First,

resources can be filtered out by choosing the resource type on the legend. All resource

Figure 3.10. Shows the state of the visualization when a feature is selected by the planner.

52

types that are marked with an x on the legend will

not be highlighted during interaction with the

visualization (shown in Figure 3.11). This can be

used by planners whenever they wish to focus on

a specific type of resource(s). Second, a reset all

button that clears all highlighted elements is

available should the visualization become

cluttered with a number highlighted elements.

This is useful whenever a planner wishes to

rapidly clear all highlighting rather than tapping

every highlighted element to toggle off existing

highlights in order to re-examine the data.

3.5. Implementation

STRATOS was implemented as a web application

written in HTML5 and JavaScript. The data it visualizes comes from the spreadsheet data

generated by ReleasePlannerTM.

3.5.1. Drawing Algorithm

In order to draw the visualization described in section 3.3, I used a combination of basic

algorithms. In this subsection, I go over the basic drawing algorithms I used to draw each

individual visual elements in STRATOS. I describe the algorithm I used to generate the

visualization as a whole. While this algorithm performed well for use in the qualitative

Figure 3.11. Filtering resource types.

53

evaluation of the visualization, it is yet to be optimized. All algorithms here after are written

in pseudocode.

Some important data structures that I left undefined but are used in the algorithms are

Points and Lists and operations such as drawBezierCurve and drawRect. These pertain to

data structures and operations that are usually included or have counterparts within basic

programming languages. It should be assumed for example that a Point structure contains

x and y coordinate values and operations such as translateX and translateY whose

respective parameters move the point in 2D space. The operations such as

drawBezierCurve and drawRect also pertains to basic drawing operations in programming

languages. They can also be thought of as mathematical functions that draw a Bezier curve

and a rectangle.

54

3.5.1.1. Flow Diagrams

Flow diagrams in STRATOS are composed of a starting point, an ending point, and the

thickness (width) of the flow. As seen in Code Listing 1 lines 13–20, the flow diagrams are

drawn using Bezier curves (Piegl and Tiller 1995). To draw a flow diagram, a path with

four points (a, b, c, and d) are needed. Points a and b are given as input parameters; point

a being the first point at top of the flow and point b being the first point at the bottom.

Points c and d are calculated by translating points a and b along the x-axis using the width

of the flow. This width corresponds to the value of the resource it represents. Control points

are calculated based on a constant and the distance between the top point and the bottom

point. For example, the control point Ca is found by translating point a to 35% the distance

from point a to b along the y-axis. This can be seen in Figure 3.12 which illustrates how a

flow diagram is drawn.

1. Flow(pointA, pointB, width){

1.

2. // points

3. Point a = pointA

4. Point b = pointB

5. Point c = pointA.translateX(width)

6. Point d = pointB.translateX(width)

2.

7. // control points

8. Point Ca = pointA.translateY(CTRL_PT_CONST_A)

9. Point Cb = pointB.translateY(CTRL_PT_CONST_B)

10. Point Cc = pointC.translateY(CTRL_PT_CONST_C)

11. Point Cd = pointD.translateY(CTRL_PT_CONST_D)

3.

12. // Use basic path drawing methods

13. draw(){

14. BeginPath()

15. drawBezierCurve(a, Ca, Cb, b)

16. drawLine(b, d)

17. drawBezierCurve(d, Cd, Cb, c)

18. drawLine(c, a)

19. EndPath()

20. }

21. }

4.

Code Listing 1. Pseudocode snippet of how to draw a single flow visual element.

55

3.5.1.2. Features

The basic components needed to draw a

feature visual element (see Figure 3.13)

are its origin point (the feature’s top left

corner), width, the height (rHeight)

corresponding to the amount of resources

it needs, and the height (vHeight)

corresponding to the amount of stakeholder votes it received. While it is not shown in Code

Listing 2, the Feature data structure also includes other information such as the feature ID,

name, description, list of dependent features, etc.

A basic rectangle drawing method is needed to draw the stacked bar graph representing a

feature. As seen in Code Listing 2 lines 13–16, the first rectangle is drawn from the origin

using a basic rectangle drawing method that takes in a point, a width, and a height—in this

case, the rHeight—as parameters. The next part of the stack is drawn using the same

Figure 3.12. Shows a flow visual

element drawn using the four points (a,

b, c, and d) and their corresponding

control points (Ca, Cb, Cc, Cd).

Figure 3.13. Shows a

feature visual element

drawn using an origin

point a, rHeight, and

vHeight. Point b is

calculated from

translating point a

along the y-axis using

the rHeight.

1. Feature(origin, width){

2. // Note:

3. // The Feature data-structure also contains other information

4. // about the feature such as name, dependent features, etc.,

5. // and other methods

6.

7. Point origin = origin

8. int width = width

9. int rHeight = toPixels(total_amount_resources) // amount of resource required

10. Int vHeight = toPixels(stakeholder_votes) // amount of stakeholder votes

11.

12. // Features are drawn using a basic rectangle drawing method

13. draw(){

14. drawRect(origin, width, rHeight)

15. drawRect(origin.translateY(rHeight), width, vHeight)

16. }

17.

18. drawFlows(){ ... }

19. }

Code Listing 2. Pseudocode snippet of how to draw a single Feature visual element.

56

method, but using vHeight as the new height and a new origin point calculated by

translating the original origin point along the y-axis using the rHeight. This ensures that

the new rectangle is drawn after the previous rectangle.

3.5.1.3. Releases

Much like features, the basic components needed to draw the visual element for releases

include an origin point, a width corresponding to the amount of resources allocated for the

release, and a height (see Figure 3.14). Again, a basic rectangle drawing method is used to

draw the release visual element as shown in Code Listing 3.

3.5.1.4. Plan

Drawing the visual elements for a plan requires a few basic drawings and a combination of

the previously mentioned visual elements. This is because the visual element for a plan is

1. Release(origin, width, height){

2. // Note:

3. // The Release data-structure also contains other information

4. // about the release such as name, list of features, etc.,

5. // and other methods

6.

7. Point origin = origin

8. int width = width

9. int height = height // amount of resource required

10.

11. // Releases are drawn using a basic rectangle drawing method

12. draw(){

13. drawRect(origin, width, height)

14. }

15.

16. drawFlows(){ ... }
17. }

Code Listing 3. Pseudocode snippet of how to draw a single Release visual element.

Figure 3.14. Shows a release

visual element drawn from an

origin (point a), width,

and height.

57

the tree hierarchy composed of the stakeholder satisfaction bar chart, releases, features, and

the flow of resources in between the hierarchies. To draw the plan, first, the top portion

(plan header) of the hierarchy is drawn. This includes the stakeholder satisfaction bar chart,

the stakeholder feature points bar, and the initial resource allocation bars. Code Listing 4

outlines the methods used to draw this top portion of the plan hierarchy and is illustrated

in Figure 3.15.

The basic components needed to draw the stakeholder satisfaction includes an origin point,

width, total height (tHeight) corresponding to the height of the rectangle that will contain

the bar chart, and bar height (bHeight) corresponding to the height of each individual bars

within the bar chart. As seen on Code Listing 4 lines 12–20, the outer rectangle is drawn

first, followed by the individual bar graphs whose width values come from the excitement

Figure 3.15. The breakdown of the top portion of an alternative plan into three components.

(a) The stakeholder satisfaction bar chart, where the width of the individual bars is calculated

from the data (denoted by the toPixels() method), (b) The stakeholder satisfaction points bar,

and (c) the initial allocation of resources.

58

levels data. These data values are translated into pixel values by the toPixels() method. To

draw the stakeholder feature points bar, the components needed include a new origin point,

width, and height. Both this width and height correspond only to the outer boundaries of

the bar, while the width of the bar representing the stakeholder feature points is calculated

59

from the actual stakeholder feature points data (Code Listing 4 line 27). The same method

is performed when drawing the boxes representing the initial allocation of resources, but

with the width value coming from the list containing actual resource values (as seen in

Code Listing 4 line 35).

1. Plan(){

2. // Note:

3. // The Plan data-structure also contains other information

4. // about the release such as name, list of releases, etc.,

5. // and other methods

6.

7. int SHFP

8. List resources

9. List excitementLevels

10.

11. // Draws the stakeholder statisfaction bar chart

12. drawSatisfactionBarChart(origin, width, tHeight, bHeight){

13. drawRect(origin, width, tHeight)

14. for (i from 0 to excitementLevels.length){

15. fillColor = excitementLevels[i].color

16. value = toPixels(excitementLevels[i].amount)

17. drawRect(origin.translateY(i * bHeight), value,

18. bHeight)

19. }

20. }

21.

22. // Draws the degree of optimality/SHFP bar

23. drawSHFPBar(origin, width, height){

24. fillColor = red

25. drawRect(origin, width, height)

26. fillColor = white

27. drawRect(origin, toPixels(SHFP), height)

28. }

29.

30. // Draws the initial allocation of resources

31. drawResourcesBar(origin, width, height){

32. prevWidth = 0 // previous width

33. for (i from 0 to the number of resources){

34. fillColor = resources[i].color

35. value = toPixels(resources[i].amount)

36. drawRect(origin.translateX(prevWidth), value,

37. height)

38. prevWidth += value

39. }

40. }

41.

42. // draws the header of the plan by drawing all of its components

43. drawPlanHeader(origin, width){

44. drawSatisfactionBarChart(origin, width, T_HEIGHT_CONST,

45. B_HEIGHT_CONST)

46. drawSHFPBar(origin.translateY(T_HEIGHT_CONST), width,

47. SHFP_HEIGHT_CONST)

48. drawResourcesBar(origin.translateY(T_HEIGHT_CONST + SHFP_HEIGHT_CONST),

49. width – RESOURCE_PADDING, + RES_HEIGHT_CONST)

50. }

51. }

Code Listing 4. Pseudocode snippet of how to draw the top portion of an alternative plan.

60

3.5.1.5. Positioning of Visual Elements

STRATOS fills up the entire area of the screen (preferably in a 16:9 ratio, 1920x1080 pixels

and above). The top left corner point, where the coordinates are x = 0 and y = 0, is the

origin point of the whole visualization (labelled as root_origin to not be confused with the

other origin points given to each visual element). To generate the visualization, the screen

has to be vertically divided into the number of alternative plans in the solution set, and

horizontally divided into three parts (Code Listing 5).

Each of the horizontal sections becomes the designated area for the hierarchy (top to

bottom: plans, releases, and then features), while the spaces in between the vertical sections

will be filled up by plans. This basic operation subdivides the screen area into equal parts,

however, I carefully implemented paddings and other margins to change the aesthetics of

the visualization, and improve overall readability. Hence, although I followed these basic

operation, the visualizations shown in this thesis may not appear to be subdivided into

equal parts. These paddings and margins are left out to simplify the explanation of the

algorithm.

The visual elements for plan headers, releases, and features are created after dividing the

screen area, and the sizes and positions of each are calculated Code Listing 6). Each of the

alternative’s plan headers are given an origin point whose x and y coordinates are based on

1. List plans //list containing all of the plans in the solution set

2.

3. pWidth = screen_width / the number of plans

4. height = screen_height / 3

5. hHeights = List[0, height, height*2]

Code Listing 5. Pseudocode snippet of dividing the screen into the spaces to be filled with plans

(pWidth) and the hierarchy (hHeights).

61

the pWidth and hHeights[0] (the top of the hierarchy), and a width that is based on the

pWidth. This width is modified slightly by a padding that prevents the visual elements from

appearing too close to each other (see Code Listing 6 lines 8–9). Releases are given an

origin point based from the x-coordinate of the origin point of the plan that they belong to

and hHeights[1], a width based from the value of the resources flowing into it, and a

constant height (Code Listing 6 lines 12–17). Lastly, features are given an origin based on

the root_origin and hHeights[2], and a constant width (Code Listing 6 lines 21–25). The

heights of the bar graphs composing the feature visual element are calculated separately as

previously mentioned in section 3.5.1.2. This division of the screen area and placement of

visual elements is illustrated in Figure 3.16.

Once the visual elements composing the hierarchy has been laid out, the flow diagrams can

be positioned using the positions of the visual elements they connect as anchors. Flows are

1. // Note: plans is the list of plans

2. // releases is the list of releases

3. // features is the list of features

4.

5. // calculate positions and sizes for plans and releases

6. For (i from 0 to the number of plans) {

7. Plan P = plans[i]

8. P.origin = Point(root_origin.x + pWidth * i, hHeight[0])

9. P.width = pWidth – PLAN_PADDING_CONST

10.

11. int prev_width = 0;

12. For (j from 0 to the number of releases in P) {

13. Release R = plans[j].releases

14. R.origin = Point(P.origin.x + prev_width, hHeights[1])

15. R.width = toPixels(R.amount_of_resources)

16. R.height = RELEASE_HEIGHT_CONST

17. }

18. }

19.

20. // calculate positions and sizes for features

21. For (i from 0 to the number of features) {

22. Feature F = features[i]

23. F.origin = Point(root_origin.x + FEATURE_WIDTH_CONST * i, hHeights[2]);

24. F.width = FEATURE_WIDTH_CONST

25. }

Code Listing 6. Calculating the positions and sizes of the plan headers, releases, and features

visual elements.

62

created one by one per resource type, connecting each plan header—specifically the part

showing the initial allocation of resources—to their respective releases and then to the ones

connecting releases to features. For the flow diagrams connecting a plan header to a release,

the pixel value of the thickness is calculated from the corresponding resource allocation

data of the release. While the thickness of those connecting a release to a feature is

calculated from the corresponding required resource data of the feature. Code Listing 7 on

page 59 shows a high level overview of the nested loop operation that performs this task.

Once the positioning of all the visual elements has been done, the visualization can be

generated by simply drawing all of the alternative plans, the releases, the flows stored

within the releases (flows connecting a plan to the releases), the features, and the flows

stored within the features (flows connecting a release to the features).

Figure 3.16. Screen division for a solution set with three alternative plans.

63

1. // Note: resources is the list of resources (budget, development time, etc.)

2. // thickness_of_preceeding_flow is a high level variable for the value of the

3. // width of the flow immediately to the left of (or before) the current flow

4.

5. For (i from 0 to the number of plans)

6. Plan P = plans[i]

7.

8. For (j from 0 to the number of resources){

9. Resource S = resources[j]

10.

11. For (k from 0 to the number of releases in P){

12. Release R = P.releases[k]

13.

14. // convert the resource allocation data

15. thickness = toPixels(R.resource_allocation[S.type])

16.

17. // Recall Flow(pointA, pointB, width)

18. Point pointA = Point(P.origin.x + thickness_of_preceeding_flow,

19. P.origin.y)

20. Point pointB = Point(R.origin.x + thickness_of_preceeding_flow,

21. R.origin.y)

22. Flow L = Flow(pointA, pointB, thickness)

23.

24. // store the flow in the release

25. R.flows.add(L)

26.

27. // previous width of a resource flow from release to feature

28. int prevWidth_rel = 0

29. For (l from 0 to the number of features in R){

30. Feature F = R.features[l]

31. // convert the required resource data

32. thickness = toPixels(F.required_resources[S.type])

33.

34. Point pointA = Point(R.origin.x +

35. thickness_of_preceeding_flow, R.origin.y + R.height)

36. Point pointB = Point(F.origin.x +

37. thickness_of_preceeding_flow, F.origin.y)

38. F.flows.add(L)

39.

40. // store the flow in the feature

41. F.flows.add(L)

42. }

43. }

44. }

45. }

Code Listing 7. Pseudocode snippet on how to calculate the positions and thickness of the flows

diagrams.

64

3.6. Chapter Summary

In this chapter, (Section 3.2) I discussed my design process by going over how I applied

the design study methodology of Sedlmair et al. (Sedlmair, Meyer and Munzner 2012) in

the design and implementation of STRATOS. I outlined the seven design guidelines (1.

Consider all factors of software release planning; 2. Provide a holistic view; 3. Support

comparison among alternative plans; 4. Support multiple decision-making strategies; 5.

Support details-on-demand; 6. Minimize required interactions; 7. Support individual and

collaborative exploration of the data) that I followed in order to create a visualization to

support the decision-making process that takes place in software release planning. In

Sections 3.3 and 3.4, I presented the hybrid visualization used in STRATOS which is the end

result of the application of the seven design guidelines. I described in detail the different

visual elements used for the abstraction of data and the interactions used to allow further

examination of the data. Lastly, in Section 3.5, I showed how the hybrid visualization is

implemented through a series of pseudocode snippets and illustrations.

In the next chapter, I go over the qualitative method used to evaluate STRATOS.

65

Chapter 4
STRATOS: STUDY

In this chapter, I describe the qualitative methodology employed to study the scope of

STRATOS in supporting the decision-making process involved in software release planning.

I highlight the methods used which included the observation of participants’ decision-

making processes and their behaviours while using STRATOS. I then present the results of

the study and discuss its possible implications for future similar visualizations.

This study was done in collaboration with an undergraduate research assistant. It focused

on identifying decision-making strategies and examining how they are affected by the use

of a visualization of data reflecting the real-life complexity of release planning. This helped

in identifying important aspects of the processes used by planners that affect their decision-

making. The study also enabled the assessment of whether the design guidelines of

STRATOS met the needs of the participants, and whether the visualization helped them

arrive to a good decision. This was also an opportunity to improve the design guidelines

and to find further requirements to help ease the complexity of decision-making in software

release planning.

66

4.1. Methodology

4.1.1. Participants

For the study, participants who have a background in software engineering and release

planning were carefully selected through a recruitment process involving the help of the

domain expert. The study involved 16 participants; however, one participant data was

excluded from the study assessment (Participant 2’s knowledge of release planning did not

meet the study requirement). As such, 15 participants were assessed (five female and ten

male): 12 were students at the graduate level from the University of Calgary—all with

computer science, electrical, computer, and or software engineering backgrounds, with

some doing research in release planning; and three participants were industry-based

software developers whose work involves software release management. They each had

different levels of experience with software release planning—nine participants have at

least one or more years of experience, and six having less than a year of experience. Two

participants had experience in actually using ReleasePlannerTM.

4.1.2. Setup

During the study, STRATOS was run on a 72” SMARTboard 3 with a 2K resolution

(1988x1080). This was chosen to present the visualization on a large screen that supports

touch and pen interaction. This setup, as seen in Figure 4.1, also made it easy to observe

each participant’s behaviour as they interacted with STRATOS. An HD webcam positioned

directly in front of the SMARTboard was used to record each session.

3 http://education.smarttech.com/en/products/hardware

67

4.1.3. Procedure

Each participant was run individually through the study, with each session lasting for about

an hour. At the beginning of each session, participants were asked to fill out a demographic

questionnaire about their expertise and experience with release planning, similar

visualizations (e.g. experience with Sankey Diagrams and parallel coordinates), and other

visualizations involving software release planning. Afterwards, the participants were given

an introduction to STRATOS explaining each component of the visualization and how to

interact with it. The remaining part of the study was divided into two phases: a

familiarization phase, and an exploration phase.

4.1.2.1. Familiarization Phase

The purpose of the first phase was to help participants build familiarity with reading and

interpreting the hybrid visualization of STRATOS, allowing them to become comfortable

interacting with it. In this phase, participants were asked to perform a set of simple tasks

with STRATOS. For this, a simple dataset containing a solution set with only three

Figure 4.1. A participant interacting with STRATOS during its study.

68

alternative plans was visualized. The participants were encouraged to ask questions

whenever they found something confusing, and assistance or clarification was provided as

needed.

The participants were asked to perform the following tasks:

Familiarization Task 1. Naming a feature and stating the amount of resources it

requires, as well as any of its dependent features should they exist.

Familiarization Task 2. Reporting to which releases, for each alternative, the feature

from Familiarization Task 1 belongs.

Familiarization Task 3. Choosing a release and indicating the amount of features

planned to be implemented in its development cycle.

Familiarization Task 4. Finding the feature that requires the greatest amount of

resources for its implementation.

Familiarization Task 5. Finding which feature has the top implementation priority

according to the stakeholder votes.

Familiarization Task 6. Reporting the amount of resources allocated for an

alternative.

Familiarization Task 7. Selecting which alternative has the most positive response

from stakeholders.

4.1.2.2. Exploration Phase

In the second phase, the participants were told to take on the role of a project manager (a

planner) in an imagined scenario. In this scenario, they were asked to explore a new dataset

and choose what they believe to be the optimal plan. For this phase, a more complex

solution set with five plans pre-generated from ReleasePlannerTM was used in order to

69

mimic a real-world scenario. While this dataset was artificial, it reflected real-life situations

where each of the alternative plan has trade-offs when compared to one another. A more

detailed description of this solution set is provided in the next subsection.

During this phase, the participants interacted with STRATOS on their own. At the same time,

they were encouraged to think aloud their thoughts as they worked on choosing an optimal

plan. Once the participants had chosen an alternative plan, they were asked to summarize

their justification as to why they thought their chosen alternative was the best plan in the

solution set.

At the end of the study, the participants were asked to fill out a post-study questionnaire

about their overall thoughts about STRATOS. Here, they were asked to rate STRATOS on how

easy it was to use and read, and their overall confidence on their chosen alternative. They

were also asked to list which parts of the visualization helped them the most in making

their decision, to give their criticisms, and to make suggestions for improvements.

4.1.4. Exploration Phase Dataset

Table 4.1 shows a simplified overview of the dataset produced by ReleasePlannerTM used

in the second phase of our study (the full spreadsheet data is included in Appendix I). The

solution set contains five alternatives with several trade-offs. Each alternative contains a

different focus;

 Alternative 1 contains the highest stakeholder satisfaction, as seen from its stakeholder

feature points, and contains no very disappointed score; however, the number of total

features released in this alternative is the lowest.

70

 Alternatives 2 and 3 contain the best balance of resources between releases, and are

tied for the most number of features released. They both release and postpone the same

features, with the only difference given in priority (i.e. some features that are

implemented earlier in Alternative 2 are also implemented in Alternative 3 but at a later

release).

 Alternative 4 is similar to Alternative 1; Alternative 4 also contains no disappointment

score, albeit having more features released than Alternative 1.

 Alternative 5 is considered the least optimal plan in the solution set. While it has the

second highest amount of features released, it contains the lowest stakeholder

71

satisfaction based on stakeholder feature points and has a high imbalance in its resource

allocation compared to the other alternatives.

Based on EVOLVE II methodology (see Chapter 1 Section 1.1.1), Alternative 2 can be

considered to be the hypothetically most balanced plan. This is because Alternative 2 (1)

maintains a greater than 95% level of optimality, (2) its stakeholder feature points contains

some surprised but only one disappointed point—overall maintaining a high level of

stakeholder excitement, and (3) it has one of the most balanced resource allocation among

the alternative plans. Nevertheless, as suggested on Table 4.1, each solution has its own

merits; as emphasized in earlier chapters of this thesis, it is precisely because each

Table 4.1. A summarized overview of the potential trade-offs among the alternative plans in the

solution set used in the study’s exploration phase.

72

alternative have advantages and disadvantages that human involvement in deciding which

alternative to choose is imperative.

4.2. Results

The participants did not have any major trouble performing the tasks given to them during

the familiarization phase of the study. Although, some had difficulty with the last task

(Familiarization Task 7: Selecting which alternative has the most positive response from

stakeholders.). This may be because this task asks the participants to find a balance between

the different excitement levels (i.e. identifying and selecting between plans that have more

very excited with some very disappointed score, against a plan that has less very excited

but no very disappointed scores) which already involves a form of decision-making. For

the remainder of the study, the distribution of participants between their chosen alternative

plans was tallied. As seen in Figure 4.2, seven of the 15 participants chose the

Figure 4.2. A bar chart

showing the number of

participants (represented by a

square) per alternative.

Whenever a participant had a

split vote, their representing

square is divided to the

number of choices they made.

The colour of the square

represent the participant’s

confidence over her/his

chosen alternative.

Figure 4.3. A bar chart of how each participant agreed according to their perceived ease of use

and readability of STRATOS. It is sorted in ascending order based on the participants’ confidence

level over their chosen alternative.

73

hypothetically best alternative (Alternative 2), while only one participant (Participant 8)

was not able to confidently make a choice. Participant 8’s reason for not being able to

choose an alternative plan is explained in this chapter’s Section 4.5. Assessment of each

participant’s confidence over the alternative(s) they chose showed that 13 of the 15

positively agreed that they had chosen the best alternative plan as illustrated in Figure 4.3.

The same figure also shows most participants agreed that it is easy to interact with and read

the hybrid visualization of STRATOS.

Further investigation showed consistency in the participants’ justifications of their choices.

Alternative 1 was chosen primarily because of its high stakeholder feature points, its zero

very disappointed stakeholder point, and the total number of features that will be

implemented should the plan be put into operation. Alternative 2 was chosen for its

balanced resource allocation, its high stakeholder feature points, and, as with Alternative

1, the total number of features that will be implemented with the plan. Alternative 3 was

chosen for its balanced resource allocation and the set of features that will be implemented.

Alternative 4 was chosen because it implements certain features the participants deemed

important but are usually postponed in the other alternatives. Alternative 5 was never

chosen; although the participants took note of the amount of features implemented in this

plan, they typically dismissed it because of its low stakeholder satisfaction suggesting that

the software could still be unsuccessful even if it implements many features.

4.3. Decision Strategies

To confirm that STRATOS supports multiple strategies for decision-making (Design

Guideline 4), I sought to find whether the participants employed different strategies while

74

using STRATOS. Based from the observations of participant behaviours and the common

reasons appearing in their justifications, several strategies that they employed in choosing

an alternative plan have been identified. While these strategies can each be used on its own,

most participants used one strategy as their main justification for choosing an alternative

plan, but also used some aspects of the other strategies while interacting with STRATOS.

The decision strategies found are as follows:

Decision Strategy 1. Resource-allocation-based decision strategy

Some participants focused on how the resources are handled within each alternative.

They tried to find discrepancies in planned resource allocation such as surplus or

insufficient budget.

Decision Strategy 2. Stakeholder-satisfaction-based decision strategy

Some participants focused on how satisfied the stakeholders would be with each

alternative. They mostly looked at stakeholder excitement levels. Some also looked

at which features were rated highly by the stakeholders and whether those features

were scheduled to be released as soon as possible.

Decision Strategy 3. Feature-based decision strategy

Some participants preferred to examine which features are implemented or

postponed within each alternative. For example, participant 11 made her own

ranking of the features based on the features’ priority votes, dependencies, and her

personal understanding of the feature based from its description. She then chose the

alternative plan that she thought to have implemented more features that were

75

important to her. Similarly, Participant 8 focused on the feature dependency

hierarchy, trying to find which alternative plan prioritizes the features that have

dependent features.

Relating these strategies back to the human model of decision-making (Zeleny and

Cochrane 1982) I discussed in Chapter 3 Section 3.2, it can be said that the Resource-

allocation-based decision strategy is a form of process-oriented approach as it looks at how

the resources are allocated and consumed through the software development stages. In

contrast, the Stakeholder-satisfaction-based decision strategy and Feature-based decision

strategy are more outcome-oriented as they look at what features will be implemented and

when, alongside the predicted levels of stakeholder satisfaction.

4.4. Participant Inclination

An important aspect that was identified while reflecting on the observations made during

the study is the different inclinations that the participants had while interacting with

STRATOS. Each participant’s behaviour were observed during the study and were

categorized accordingly. This was done via open-coding of the observed participant

behaviours as seen during the exploration phase of the study and in the recorded videos. In

summary, behavioural patterns among the participants were taken note of by focusing on

to which elements of the visualization each participant seemed to be most drawn, and any

repetitive actions they each made. During a pilot and the study, nine repetitive behaviours

were identified (see subsections 4.4.1 and 4.4.2 for these behaviours). A participant was

given a mark for a behaviour should they perform it, they are then classified based on which

behaviour they had more marks of. The pattern showed that the participants were inclined

76

to use either visual or numeric cues, or a mix of both. Of the 15 participants, nine were

categorized to have had a visual inclination; three had a numeric inclination; while the

other three had a mixed inclination (shown in Figure 4.4). Most participants who had a

visual or mixed inclination chose Alternative 2. Those with a numeric inclination were

more varied in their choices; however, none of them chose Alternative 2. The choice for

Alternative 2 can be attributed from the use of Resource-allocation-based decision strategy

because of its balanced resource allocation. Most of the participants also agreed—with

Alternative 2’s efficient handling of resources being their frequent justification for

choosing it. Participants had a visual inclination were also more confident about their

choice.

These inclinations are important because they could affect the performance of participants

alongside other aspects such as their previous experiences with visualization and expertise

in planning. Based on this study, even if two participants used the same decision strategy

in choosing an alternative, should they have different inclinations, their method of using

STRATOS differed as well. This potentially led them to choose different plans altogether.

For example, Participant 3, who had a visual inclination, and Participant 14, who had a

numeric inclination, both used a form of Resource-allocation-based decision strategy as

their primary strategy but they ultimately chose different plans—with Participant 3

choosing Alternative 4 and Participant 14 choosing Alternative 1. To explain how this

could happen, each inclination have been differentiated in the following subsections. The

77

following subsections also describe the behaviours of the participants who had them, and

discuss how STRATOS supported each.

4.4.1. Visual Inclination

Figure 4.5 shows a participant with a visual inclination using STRATOS. Participants with a

visual inclination looked at the data primarily using visual cues. They easily understood

STRATOS’ visualization techniques and used the visual representations to examine and

compare alternative plans. The repetitive behavioural pattern of the participants who had

this inclination include:

1. Using the perceived widths of the resource allocation flows to compare allocation

values among different alternative plans (see Figure 4.5).

Figure 4.4. Chart showing the distribution of participants into the different inclination categories.

This chart also shows some details about the participants (each represented by a square with the

corresponding participant number) such as the alternative(s) they chose, length of their release

planning experience, and whether they have experience with visualizations similar to STRATOS.
Figure 4.5. A participant with a visual inclination using the flow visual element to approximate

resource allocation values.

78

2. To compare the releases based on the features they release, they relied on their

perceived amount of features released (depicted by highlighted features when a

release is selected) as opposed to actually counting the highlighted features, and

used the flow visual elements as pointers from a release to the implemented features.

3. Using the heights of the feature visual elements to compare between features.

4. Using the stakeholder satisfaction bar charts to compare stakeholder happiness.

5. Repeated selection of visual elements to highlight and compare factors.

STRATOS’ flow visualization was found to effectively support participants who used the

Resource-allocation-based decision strategy with this inclination. Those who used this

strategy looked at the flow visualization to get an overview of how resources are divided

among releases. In particular, they focused on comparing the thickness and gaps between

the flow visual elements to find insufficient or surplus resources. Those who used the

Feature-based decision strategy used the flow visualization like parallel coordinates; using

the flow lines from the features as lines pointing to which releases they are scheduled for

implementation for each alternative. Those who used the Stakeholder-satisfaction-based

decision strategy mainly used the top portion of the visualization (plan headers) displaying

the stakeholder excitement levels, and the stakeholder vote representation at the bottom of

each feature.

4.4.2. Numeric Inclination

Participants with a numeric inclination used actual numbers in order to examine and

compare alternative plans. These participants used the visual representations only to locate

tooltips showing the represented data as numbers on which they heavily relied on. Some

even used the SMARTboard pen to write down these numbers to remember them when

79

they needed to calculate. For example, Participant 4 who used the Resource-allocation-

based decision strategy wrote down the actual numbers for the resources in each alternative

and then calculated the difference between them (see Figure 4.6). The repetitive

behavioural pattern of the participants who had this inclination include:

1. Heavy reliance on numeric details given on each visual elements’ tooltips.

2. Using the SMARTboard pen to write down numeric details they found from 1.

3. Comparing values through manual computation of differences (i.e. rather than

using the perceived widths of the gaps between the resource allocation depicting

discrepancies, they instead subtracted the values of the allocated resource and the

required resource).

4. Manual counting of features implemented in a release.

Figure 4.6. Shows a photo of STRATOS after a participant with a numeric inclination used it. The

participant took note of the numeric values of the visual element via tooltips and wrote them to

help himself remember as he calculated the resource allocation differences among the

alternatives.

80

4.4.3. Mixed Inclination

Participants with a mixed inclination used the visual representations similar to those with

a visual inclination; however, they also used the actual numeric data to compare visual

representations that looked similar. As with visually inclined participants, participants with

this inclination were supported effectively by STRATOS. Their inclination also encouraged

them to examine the details of the data rather than simply relying on what they have

perceived visually (see Figure 4.7). However, they also suffered from the same

disadvantages as those with a numeric inclination. The repetitive behavioural patterns of

the participants with this inclination are a balanced combination of those listed under visual

and numeric inclinations.

a

b

Figure 4.7. A participant with mix inclination using tooltips to see actual numbers (a), while

relying on the visual elements to quickly eliminate plans that appear to be less promising (b).

81

4.4.4. Participant Inclinations: General Observations

Most participants who had a visual or mixed inclination chose Alternative 2, while those

with a numeric inclination were more varied in their choices; however, none of them chose

Alternative 2. This can be attributed to the visualization effectively showing Alternative

2’s balanced resource allocation which gave advantage to those who had a visual

inclination and used a Resource-allocation-based decision strategy. Evidence for this can

be found in the participants’ justifications—with Alternative 2’s efficient handling of

resources being a frequent justification for choosing it. This could also be the reason why

participants who were confident with their choice(s) tended to have a visual inclination.

Moreover, if a participant thought that the visualization was easy to read, he/she was more

likely to be confident in her/his choice(s).

4.5. Discussion and Lessons Learned

The inclinations identified in this study may be artefacts stemming from STRATOS being

designed as a visualization tool; however, they could also be a form of personal inclination

or preference present in any individual (i.e. something planners will have regardless of the

type of decision-making support tool they are using). In this study, participants without

previous experience with similar visualizations were more dispersed in their inclinations,

while those with previous exposure to similar visualizations were more visually inclined.

This suggests that the inclinations stem both from STRATOS’ design and from personal

experience—meaning that the three inclination categories identified in this study may not

be an exhaustive list and further investigation is needed to identify more categories.

82

Supporting these inclinations should be taken into account in designing future visualization

tools like STRATOS.

From the observations, while it may be that most of the participants came in to the study

with the resource-allocation-based decision strategy as their pre-established strategy for

decision-making, it was interesting to see a connection with the use of this strategy and the

way STRATOS is designed. Because STRATOS’ main visualization is a flow diagram of

resources, it can be argued that participants who have a visual or mixed inclination have

found it easier to assess each alternative based on their resource allocation. However, it is

also possible that they may have been urged to employ this strategy as their main decision

strategy because the most prominent visual cue in STRATOS’ visualization is the flow

diagram of resources. As release planning is often subjective due to the multitude of

constraints and stakeholder values, it is good that STRATOS’ visualization allowed for the

exploration of the different alternatives. What matters is that none of the participants chose

Alternative 5, which was deemed to be the least balanced plan in the solution set. Thus,

despite the fact that some participants did not choose Alternative 2, they were able to make

informed decisions, and the visualization did not lead them towards a detrimental solution.

This shows that the visualization showcased the different alternatives and did not bias the

participants to fixate on one alternative.

4.5.1. Discussion Regarding the Design Guidelines

Relating these findings back to STRATOS’ design guidelines (Chapter 3, Section 3.2.1), I

found that all strategies employed by the participants involved some form of examining all

of the factors of release planning—suggesting that STRATOS’ visual elements allowed the

planners to examine and consider as many release planning factors as they could (Design

83

Guideline 1). However, while the basic factors of release planning were easily comparable

in our approach, a factor that is not immediately apparent is the risk factor. An automated

identification and presentation of risk factors in each alternative will greatly help planners

in risk assessment to find plans that are less risky for the development team.

The unified layout of STRATOS showed all of the factors and how they relate with each

other, providing a holistic view (Design Guideline 2) and allowing participants to compare

alternatives (Design Guideline 3). However, the study showed that while a singular layout

could help in alleviating the mental load coming from view switching, this gives its own

type of mental load and that a considerable amount of training time is necessary for the

participants to be able to use STRATOS comfortably and effectively. This issue raises a

question on whether compartmentalizing the single view into several visualization widgets

(one visualization per factor) and updating all whenever one is interacted with by the

planner, could lower the mental load. This requires further investigation as multiple view

switches have also been shown to also cause cognitive overload (Wang Baldonado,

Woodruff and Kuchinsky 2000). Arriving at a good balance would require additional future

work. Nevertheless, the choice of combining Sankey diagrams and parallel coordinates in

a tree view hybrid visualization proved to be useful in supporting participants who had a

visual or mixed inclination.

To some extent, STRATOS also supported those with a numeric inclination via details-on-

demand (Design Guideline 5). STRATOS provides the ability to drill down to actual data

through tooltips—and numerically inclined participants did use the structure of STRATOS

to find the right tooltips—there are some aspects of this numerical approach that the design

of STRATOS did not effectively support. For example, participants who used a Stakeholder-

84

satisfaction-based decision strategy with a numeric inclination were not able to draw out

numbers that compose the stakeholder excitement levels—data that they needed to see. On

the other hand, Participant 8, who used a Feature-based decision strategy—focusing mostly

on stakeholder votes for each features, dependent features, and when they are

implemented—had to go through each of the features to see their details in the tooltips.

This put a heavy mental load on the participant which eventually led him to say that he

could not use STRATOS to find the most optimal plan.

It is hard to say whether these difficulties are due to the participants not understanding the

visualization enough, or because some type of support was lacking, as our post-study

questionnaire data showed that most numerically inclined participants still agreed that the

visualization was easy to read (see Figure 4.3 on page 68). Nevertheless, rather than having

the participants dig for numerical information through tooltips, it is advisable to

specifically design ways of how to integrate numerical data within the same view of the

visualization. Minimizing the required interactions for all the inclinations is imperative to

ensure they are all well-supported (Design Guideline 6). This minimization of required

interactions can be extended to the feature visual elements as well. For instance, rather than

showing a single bar for the stakeholder votes with its breakdown shown in the tooltip, the

domain expert suggested that it would be more meaningful to see the vote breakdown as

separate parts of the stacked bar. This is because some stakeholders have a higher weight

than others, and seeing the vote of a targeted stakeholder at-a-glance can add more utility

to the visualization. The steps required in finding the dependencies of features can also be

minimized by arranging the features in space based on their dependencies, extending the

tree layout of the hybrid visualization, rather than keeping them in a single axis.

85

In Section 4.3, the hybrid visualization of STRATOS has been shown to support multiple

decision-making strategies (Design Guideline 4). However, this study focused on

individual analysis, hence, further evaluation is needed to identify group decision-making

strategies and how support for individual decision-making strategies can be appropriated

to support group dynamics (Design Guideline 7).

4.6. Chapter Summary

In this chapter, I have described the qualitative methodology employed to evaluate the

effectiveness of STRATOS in supporting the decision-making process involved in software

release planning. In Section 4.1, I gave a detailed description of the setup and procedure of

the study, and an overview of the visualized dataset. I have presented the results of this

study in Section 4.2 showing that STRATOS did help the participants arrive at what was

considered a good decision.

I then outlined the decision strategies (Resource-allocation-based decision strategy,

Stakeholder-satisfaction-based decision strategy, and Feature-based decision strategy)

employed by the participants in choosing the most optimal plan and how each was

supported by STRATOS. I also outlined the participant inclinations (Visual Inclination,

Numeric Inclination, and Mixed Inclination) that had an effect on their method of using

STRATOS and the previously mentioned strategies.

Lastly in Section 4.5, I discussed the outcome of the study, emphasizing the strengths and

weaknesses of STRATOS—with regards to the validity of its design guidelines—and

foreshadowing possible implications for future visualizations that aim to give decision-

making support in software release planning.

86

In the next chapter, I go over some of the possible future work stemming from the lessons

learned in this study and give a conclusion to this thesis.

87

Chapter 5
CONCLUSION

This final chapter serves as a closing remark to this thesis in which the ideas presented in

the previous chapters are recapitulated and concluded. Here, I also explore some future

work which includes improvements and ideas beyond the scope of this thesis.

5.1. The Work Thus Far

In Chapter 1, I gave a background information about the practice of software release

planning, and shed light on why a well-informed decision is vital for planners to be able to

choose the optimal plan for releasing software into market. In this chapter, I establish that

this thesis is primarily about supporting planners’ decision-making processes through

visualizations that enable them to make informed decisions. Thus, this thesis is concerned

specifically with how to support planners in choosing an optimal plan by visualizing the

interrelated factors of release planning.

88

5.1.1. Revisiting the Thesis Questions

In order to support planners in choosing an optimal plan by visualizing the interrelated

factors of release planning, I focused on exploring solutions to three research questions,

each dictated by an underlying problem or challenge planners face in making decisions.

These research questions are reiterated below, along with the description of the underlying

problem which dictated its exploration:

Research Question 1 is motivated by Problem 3: It can be difficult for planners to compare

alternative plans in order to be able to choose the best one. This problem suggests that for

a visualization to effectively support decision-making in software release planning, it must

simplify the planners’ task of comparing alternative plans in a solution set. Hence,

Research Question 1 is how can a visualization be designed such that it helps planners

see the trade-offs between plans at-a-glance?

Research Question 2 is motivated by Problem 2: It can be difficult for planners to account

for the interrelated factors of software release planning. This problem suggests that for a

visualization to effectively support decision-making in software release planning, it must

help the planners account for as many as possible interrelated factors of software release

planning. Hence, Research Question 2 is how can a visualization be designed such that it

visualizes the interrelatedness of the different factors of release planning?

Lastly, Research Question 3 is motivated by Problem 1: Planners can have different

decision-making processes. This problem suggests that to effectively support decision-

making in software release planning, visualizations must be able to support different types

of decision-making processes. These processes can be in a form of outcome-oriented or

89

process-oriented approaches (Chapter 3, Section 3.2). Hence, Research Question 3 is how

can a visualization be designed such that it supports multiple types of decision-making

processes among different planners?

5.1.2. Proposed Solution

Chapter 3 outlined the exploratory solution this thesis offers to solve these questions. Also

in this chapter, I described how the design study methodology was applied to develop a set

of visualization design guidelines exemplified by a visualization—STRATOS (STRATegic

software release planning Oversight Support). These design guidelines were:

Design Guideline 1. Consider as many as possible factors.

Knowing that the conditions of multiple factors of software release planning is

important for planners to be able to make good and well-informed decisions, the

design of the visualization must take into account visualizing as many factors as

possible.

Design Guideline 2. Provide a holistic view.

Visualizations for supporting decision-making in software release planning should

not only be able to show the factors but must also be able to show how they relate

to one another. A holistic view allows decision makers to consider most of the

factors with considerable ease rather than trying to do so while switching between

multiple views.

Design Guideline 3. Support comparison among alternative plans.

Comparing trade-offs among possible alternatives is at the heart of decision-making

in software release planning. Therefore, plans must be shown as distinct visual

elements within the visualization to help planners easily identify them as

90

alternatives to one another. At the same time, consistency across representations

should be employed such that they could be visually compared.

Design Guideline 4. Support multiple decision-making strategies.

Different planners often have different approaches on deciding what the best

alternative is in regards to their project’s goal. An interactive visualization should

allow planners to explore the data according to their own preferences; by letting

them find possible outcomes (outcome-oriented approach) and or by helping them

better understand a given solution (process-oriented approach).

Design Guideline 5. Support details-on-demand (Shneiderman, The Eyes Have it: A

Task by Data Type Taxonomy for Information Visualizations 1996).

While visually conveying information allows planners to do simple comparisons

at-a-glance, they should still be able to access detailed information such as the

numeric values of the visualized data. This could help planners to accurately distil

information that look similar when visualized.

Design Guideline 6. Minimize required interactions.

Minimizing interaction over-head by avoiding excessive clicking, selecting, etc.,

while still providing full visualization and data access will make interacting with

the visualization more pleasant. This could lead to better acceptance of the tool,

making it easier to be integrated with other support tools or methods that the

planners may already using.

Design Guideline 7. Support individual and collaborative exploration of the data.

Release planners may explore alternatives individually or in a group, such as when

having a meeting. Hence, there is an advantage to allow planners—either

91

individually or as a group—to explore the visualization simultaneously according

to their own practices and as a communicative tool.

In summary, Design Guideline 3 and 6 are means of providing a solution to Research

Question 1, Design Guideline 2, as well as 1 and 5 are means of providing a solution to

Research Question 2, and lastly, Design Guideline 4, as well as 1 and 5–7 are means of

providing a solution to Research Question 3. A more detailed description of how these

guidelines explores the research questions of this thesis was provided on Chapter 3 Section

3.2.1. These design guidelines were realized in STRATOS, a hybrid visualization formed by

combining aspects of Sankey diagrams and parallel coordinates within a multiple tree

layout. A full description of this visualization tool was given in Chapter 3 Sections 3.3–4,

while pseudocode descriptions of its drawing algorithm was given in Section 3.5.

To assess the scope a visualization like STRATOS can potentially support, a qualitative study

was conducted as described in Chapter 4. Several decision strategies supported by STRATOS

were identified through this study showing that a visualization created under the design

guidelines offered in this thesis could support multiple decision-making strategies.

Moreover, the study results also suggested that STRATOS enabled the planners to explore

the trade-offs between the alternative plans, helping them arrive to a good decision. The

decision strategies identified through the study are reiterated as follows:

Decision Strategy 1. Resource-allocation-based decision strategy

A strategy employed by participants who focused on how the resources are handled

within each alternative, finding discrepancies in the use of resources.

Decision Strategy 2. Stakeholder-satisfaction-based decision strategy

92

A strategy employed by participants who focused on how happy the stakeholders

would be with each alternative.

Decision Strategy 3. Feature-based-decision strategy

A strategy employed by participants who preferred to examine which features are

implemented or postponed within each alternative.

The qualitative study also allowed for the identification of different participant inclinations

that affected their use of STRATOS. From the findings, it can be said that these inclinations

stem from the way the visualization has been designed and from personal inclination or

preference, and so, should be taken into consideration when developing future

visualizations like STRATOS. A more thorough description of these inclinations and a

discussion on how they affected the participants’ decision-making processes was detailed

in Chapter 4 Sections 4.4 and 4.5 respectively.

The participant inclinations are reiterated as follows:

Participant Inclination 1. Visual Inclination: A tendency for participants to examine

and compare alternative plans in the solution set primarily using visual cues.

Participant Inclination 2. Numeric Inclination: A tendency for participants to

examine and compare alternative plans in the solution set through actual numbers

and manual computations.

Participant Inclination 3. Mixed Inclination: A tendency for participants to use a

balance between the previously described inclinations.

93

5.1.3. Contributions

As previously stated in Chapter 1, the contributions of this thesis are as follows:

Thesis Contribution 1. STRATOS, a hybrid visualization that visualizes potential plan

outcomes and reveals the decision-making factors for several plans within a single

view, making it possible to compare several plans at once.

Thesis Contribution 2. The qualitative evaluation methodology employed to study

how planners used STRATOS and possibly similar visualizations

Thesis Contribution 3. The results of the study of STRATOS and its possible

implications for other visualizations supporting decision-making in software

release planning.

5.2. The Work Ahead

Avenues for future work can be derived from the lessons learned from the study of

STRATOS as discussed in Chapter 4 Section 4.5. In the same section, the limitations of

STRATOS, its design guidelines, and the qualitative method used in its study were addressed,

foreshadowing some of the improvements that can be made. These improvements include

scaling STRATOS to overcome the limitations of its current state, and performing further

evaluation and investigation to answer some of the questions that were left unanswered.

5.2.1. Improving STRATOS

STRATOS can be improved in many ways. One way is to improve support for planners with

a numeric inclination. As stated in Chapter 3 Section 3.2, I worked closely with a domain

expert over the course of developing STRATOS. The domain expert suggested that in order

94

to better support this type of inclination, a type of dashboard that integrates the visual

elements of STRATOS with a view of the spread sheet containing the numerical data.

Dashboards have been shown to provide better awareness of both high-level and low-level

aspects of data (Treude and Storey 2010), making its incorporation with the visualization

of STRATOS convincingly beneficial.

As I have pointed out in Chapter 4 Section 4.5, while STRATOS’ singular layout alleviated

the mental load stemming from view switching, it also came with its own type of mental

load. That is, some participants felt overwhelmed by the amount of information being

shown at once, requiring participants to undergo a considerable amount of training time.

As stated Section 4.5.1, a possible solution is to compartmentalize the different parts of the

visualization into several visualization widgets (possibly one factor per widget). The

incorporation of dashboard elements with STRATOS’ visualization could help in

compartmentalizing the different parts of its singular view. The domain expert also

Figure 5.1. Implementing a step-by-step guide the planners could follow while using STRATOS.

The parts of the visualization that are currently not needed for the step are blurred out.

95

suggested implementing a feature that guides the planner along a step-by-step analysis of

the data shown in the visualization (see Figure 5.1). This would enable the planner to focus

on a certain portion of the visualization, while the rest of the visualization is rendered out-

of-focus to reduce visual clutter but maintain overall awareness. For example, if a planner

is currently at the step that tells him/her to compare the stakeholder happiness among the

alternative plans, then the visualization will focus on each alternatives’ header and blur out

the rest of the visualization. This feature should also allow for being overridden by the

planner to retain the perceived freedom of choice afforded by STRATOS’ design.

There are also other features that could be implemented to turn STRATOS from a simple

visualization tool into a full visual analytics tool. Direct manipulation, or being able to

modify the data on the spot (Shneiderman and Maes, Direct Manipulation vs. Interface

Agents 1997) could further increase decision support. For example, a planner can change

the values for a resource such as budget by dragging the width of the bar representing the

resource; and after doing so, the visual elements update accordingly, adjusting to the new

input value. Furthermore, embedded analysis of the data could highlight areas of the data

that could be missed due to human error.

STRATOS’ drawing algorithm can also be improved through optimization. While the current

implementation is sufficient for running locally on a single computer, optimizing its code

will be beneficial when it is extended to support non-collocated interaction with more than

one people over a network or the internet. To support this, one may look into the

suggestions given by Gutwin and Greenberg from the groupware toolkit (Gutwin and

Greenberg 1995). This includes providing awareness of what the other members of the

team are doing through a multi-cursor visualization of each member’s cursor (i.e. cursor

96

movements and interactions performed by a member is reflected on all members’ view),

and providing video conferencing.

5.2.2. Further Evaluation and Investigation

One limitation of the qualitative study employed to study STRATOS is that the majority of

its study participants were students, and only a handful were planners from industry. While

a participant sample is seldom perfect and this is always a limitation, this study’s

participants’ skill set was both representative and sufficient for the study’s purpose. The

goal of this study was to understand the scope of what a visualization like STRATOS

potentially supports, and not whether STRATOS (in its current prototype form) should be

the tool used in industry. Nevertheless, a study involving industry planners, such as project

and product managers, could shed light into how visualizations like STRATOS could

perform in the wild. It could also lead to the identification of other decision-strategies,

inclinations, and inform some leeway on how this type of visualizations can be integrated

with existing management practices such as Kanban. Furthermore, the study was

performed individually between participants, and as such, it did not investigate what roles

STRATOS could take on as part of a development team dynamics. Investigating this could

inform us about group decision-making strategies, how they relate to individual decision-

strategies and inclinations, and how to best support them.

5.3. Closure

In conclusion, the decision-making process that takes place in software release planning

can be supported through visualization. In particular, this thesis has done so through

supporting planners in choosing an optimal plan by visualizing the interrelated factors

97

of release planning. Through the design guidelines exemplified by STRATOS, I have shown

the process of designing a visualization that supports this decision-making process, arriving

at the end result of a hybrid visualization combining Sankey diagrams and parallel

coordinates in a multiple tree layout. To support this claim, a qualitative study has been

performed to study STRATOS, arguably showing that by following our design guidelines,

the resulting visualization was able to support multiple types of decision-making processes

and inclinations. This thesis can perhaps encourage the development of other visualization

tools that provide decision-making support—and in the future, extend the lessons learned

from here to the design of visualizations supporting decision-making beyond software

release planning.

98

BIBLIOGRAPHY

Amandeep, Guenther Ruhe, and Mark Standford. 2004. "Intelligent Support for Software

Release Planning." In Product Focused Software Process Improvement, 248-262.

Springer Berlin Heidelberg.

Anderson, David J. 2010. Kanban. Blue Hole Press.

Bhawnani, Pankaj, and Guenther Ruhe. 2005. "ReleasePlanner–Planning New Releases for

Software Maintenance and Evolution." ICSM (Industrial and Tool Volume). 73–76.

Buja, Andreas, John Alan McDonald, John Michalak, and Werner Stuetzle. 1991.

"Interactive Data Visualization using Focusing and Linking." IEEE Conference on

Visualization. San Diego, CA: IEEE. 156–163.

Card, Stuart K., Jock D. Mackinlay, and Ben Shneiderman. 1999. Readings in Information

Visualization: Using Vision to Think. Morgan Kaufmann.

Carlshamre, Pär, Kristian Sandahl, Mikael Lindvall, Björn Regnell, and Johan Natt och

Dag. 2001. "An Industrial Survey of Requirements Interdependencies in Software

Product Release Planning." Fifth IEEE International Symposium on Requirements

Engineering. IEEE. 84–91.

Clark, Wallace, and Henry Laurence Gantt. 1923. The Gantt Chart, a Working Tool of

Management. New York: Ronald Press.

Feather, Martin S., Steven L. Cornford, James D. Kiper, and Tim Menzies. 2006.

"Experiences using Visualization Techniques to Present Requirements, Risks to

Them, and Options for Risk Mitigation." Requirements Engineering Visualization

REV. IEEE.

99

Feiner, Steven. 1988. "Seeing the Forest for the Trees: Hierarchical Displays of Hypertext

Structures." ACM Conference on Office Information Systems. New York, NY, USA:

ACM. 205–212.

Fekete, Jean-Daniel, Jarke J. van Wijk, John T. Stasko, and Chris North. 2008. "The Value

of Information Visualization." In Information Visualization, edited by Kerren

Andreas, John T. Stasko, Jean-Daniel Fekete and Chris North, 1–18. Springer

Berlin Heidelberg.

France, Robert, Andy Evans, Kevin Lano, and Bernhard Rumpe. 1998. "The UML as a

Formal Modeling Notation." Computer Standards & Interfaces 325–334.

Greer, D., and Guenther Ruhe. 2004. "Software Release Planning: an Evolutionary and

Iterative Approach." Information and Software Technology 243–253.

Gutwin, Carl, and Saul Greenberg. 1995. "Support for Group Awareness in Real Time

Desktop Conferences." Proceedings of The Second New Zealand Computer Science

Research Students Conference . Hamilton, New Zealand. 18–21.

Henry, Nathalie, Jean Daniel Fekete, and Michael J. McGuffin. 2007. "NodeTrix: A Hybrid

Visualization of Social Networks." IEEE Transactions on Visualization and

Computer Graphics 1302–1309.

Inselberg, Alfred, and Bernard Dimsdale. 1990. "Parallel Coordinates: A Tool

forVisualizing Multi-dimensional Geometry ." First Conference on Visualization.

Los Alamitos, CA, USA: IEEE Computer Society Press. 361–378.

Jantunen, Sami, Laura Lehtola, Donald C. Gause, U. Rex Dumdum, and Raymond Barnes.

2011. "The Challenge of Release Planning." Proceedings of the Fifth International

Workshop on Software Product Management (IWSPM). Trento, Italy: IEEE. 36–45.

100

Kosara, Robert, Fabian Bendix, and Helwig Hauser. 2006. "Parallel Sets: Interactive

Exploration and Visual Analysis of Categorical Data." IEEE Transactions on

Visualization and Computer Graphics 558–568.

Lurie, Nicholas, and Charlotte Mason. 2007. "Visual Representation: Implications for

Decision Making." Journal of Marketing 160–177.

Piegl, Les, and Wayne Tiller. 1995. Curve and Surface Basics. Springer Berlin Heidelberg.

Reihmann, Patrick, Manfred Hanfler, and Bernd Froehlich. 2005. "Interactive Sankey

Diagrams." IEEE Symposium on Information Visualization INFOVIS. IEEE. 233–

240.

Ruhe, Guenther. 2011. Product Release Plannning: Methods, Tools, and Applications.

CRC Press.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. 2004. The Unified Modeling

Language Reference Manual. 2nd. Pearson Higher Education.

Sankey, H. R. 1896. "The Thermal Efficiency of Steam-Engines." Minutes of the

Proceedings 182–212.

Schmidt, Mario. 2008. "The Sankey Diagram in Energy and Material Flow Management."

Journal of Industrial Ecology 82–94.

Sedlmair, Michael, Miriah Meyer, and Tamara Munzner. 2012. "Design Study

Methodology: Reflections from the Trenches and the Stacks." IEEE Transactions

on Visualization and Computer Graphics 2431–2440.

Shneiderman, Ben. 1996. "The Eyes Have it: A Task by Data Type Taxonomy for

Information Visualizations." IEEE Symposium on Visual Languages. IEEE. 336–

343.

101

Shneiderman, Ben, and Pattie Maes. 1997. "Direct Manipulation vs. Interface Agents."

Interactions 42–61.

Treude, Cristoph, and Margaret-Anne Storey. 2010. "Awareness 2.0: Staying Aware of

Projects, Developers and Tasks using Dashboard and Feeds." ACM/IEEE

International Conference on Software Engineering. Cape Town, South Africa:

IEEE. 365–374.

Tufte, Edward R. 1983. The Visual Display of Quantitative Information. Cheshire, CT,

USA: Graphics Press.

Wang Baldonado, Michelle Q., Allison Woodruff, and Allan Kuchinsky. 2000. "Guidelines

for Using Multiple Views in Information Visualization." Proceedings of the

Working Conference on Advanced Visual Interfaces. New York, NY, USA: ACM.

110–119.

Wnuk, Krzysztof, Björn Regnell, and Lena Karlsson. 2008. "Visualization of Feature

Survival in Platform-Based Embedded Systems Development for Improved

Understanding of Scope Dynamics." Requirements Engineering Visualization REV.

IEEE. 41–50.

Zeleny, Milan, and James L. Cochrane. 1982. Multiple Critera Decision Making. New

York: McGraw-Hill.

102

Appendix I
EXPLORATION PHASE DATASET

Appendix 1 contains the full spreadsheet data visualized during the exploration phase of

STRATOS’ study.

103

Solution Set Alternatives

ID Project 1 2 3 4 5
1 Account Creation 1 1 1 1 1

2 Login 1 1 1 1 1

3 List of Lessons + Navigation 1 1 1 1 1

4 Lesson Progress 3 1 1 3 1

5 List of Exercises 1 1 1 1 1

6 Exercise: Fill in the Blanks 1 1 1 1 1

7 Exercise: Multiple Choice 1 1 2 1 1

8 Exercise: True or False 1 1 2 1 1

9 Exercise: Translation 2 2 2 2 2

10 Exercise: Dictation 2 3 3 2 2

11 Grammar Summary 1 1 1 3 3

12 Exercise Feedback 3 3 3 3 3

13 Exercise: Correction 2 3 3 2 2

14 Import Lesson 3 1 1 3 3

15 Export Progress 3 3 3 3 2

16 Import Progress 3 2 2 3 1

17 Admin: Create Lesson 1 1 1 1 1

18 Admin: Create Exercise 3 2 1 3 3

19 Admin: Create Question for Exercise 3 3 3 3 3

20 Admin: Attach Media 3 3 3 3 3

21 Admin: See student progress 1 1 1 1 1

22 Admin: Add student 2 2 1 1 1

23 Admin: Remove Student 1 2 1 1 3

24 Admin: Delete Question 3 1 2 1 1

25 Admin: Delete Exercise 1 1 1 1 1

26 Admin: Delete Lesson 1 1 1 1 1

27 Admin: Save lesson set 1 2 1 1 3

Alternative
degree of
optimality

SHFP

1 98.3 35430

2 98.2 35387

3 97.9 35285

4 96.2 34692

5 94.9 34183

Spreadsheet 1. Shows the spreadsheet of the solution set containing five alternative plans and

the distribution of the 27 features into the releases among each alternative.

Spreadsheet 2. Shows the spreadsheet data containing the stakeholder feature points (SHFP)

and degree of optimality for each alternative plan.

104

Requirement

Precedence &

Coupling

Constraints

Resource Consumption

ID Group Requirement Description
Pre-

Assignment
Precedes

Coupled
to

Budget
Design
Effort

Development
Effort

Testing
Effort

1 Login
Account
Creation

students or
instructors are
able to create

an account

03, 04,
05, 06,
07, 08,
09, 10,
11, 12,
13, 14,
15, 16,
17, 18,
19, 20,
21, 22,
23, 24,
25, 26,

27,

 600 6 10 3

2 Login Login

Students and
instructors can
log into their

accounts

03, 04,
05, 06,
07, 08,
09, 10,
11, 12,
13, 14,
15, 16,
17, 18,
19, 20,
21, 22,
23, 24,
25, 26,

27,

 600 4 5 3

105

ID Group Requirement Description
Pre-

Assignment
Precedes

Coupled
to

Budget
Design
Effort

Development
Effort

Testing
Effort

3 Exercises
List of Lessons
+ Navigation

List of lessons
to be studied is

presented,
each lesson
with a set of
exercises.

04, 05,
06, 07,
08, 09,
10, 11,
12, 13,
14, 15,
16, 17,
18, 19,
20, 21,
22, 23,
24, 25,
26, 27,

 1000 13 16 15

4 Exercises
Lesson

Progress

Lesson
progress
(lessons

accomplished /
total number of

lessons) is
presented.

 900 12 8 3

5 Exercises
List of

Exercises

Each lesson
features a set
of exercises to

be solved.

07, 08,
09, 10,
11, 12,

13,

 900 5 10 3

106

ID Group Requirement Description
Pre-

Assignment
Precedes

Coupled
to

Budget
Design
Effort

Development
Effort

Testing
Effort

6 Exercises
Exercise: Fill in

the Blanks

A sentence is
provided, in

which the user
fills in the

information
required to

properly
complete a

sentence. This
may include
modifying
words in

brackets to the
proper tense.

 12, 13, 2500 25 30 20

7 Exercises
Exercise:

Multiple Choice
 12, 13, 1800 22 20 10

8 Exercises
Exercise: True

or False
 12, 13, 1600 18 20 10

9 Exercises
Exercise:

Translation

Users are
required to

translate a one
or more

sentences.

 12, 13, 3000 25 60 40

10 Exercises
Exercise:
Dictation

Users listen to
an audio and

are required to
type what they

hear.

 12, 13, 5000 30 60 20

107

ID Group Requirement Description
Pre-

Assignment
Precedes

Coupled
to

Budget
Design
Effort

Development
Effort

Testing
Effort

11 Exercises
Grammar
Summary

Users are
presented with
a summary of
the grammar

points required
for the current
exercise set.

 1500 20 22 5

12 Exercises
Exercise

Feedback

Users are able
to go through
their answers

and review
whether they

answered
correctly or

incorrectly. A
score is

provided.

 2000 30 17 15

13 Exercises
Exercise:
Correction

Users are able
to correct their

exercises.
Grade is
adjusted

accordingly.

 1000 18 17 7

108

ID Group Requirement Description
Pre-

Assignment
Precedes

Coupled
to

Budget
Design
Effort

Development
Effort

Testing
Effort

14 Import Lesson

Users can
import a full

chapter
containing
grammar

summaries and
exercises and
add them to a
current set.

 1000 14 15 4

15
Export

Progress

Users can save
all the

information
associated to
their account

and their
progress.

 500 8 8 4

16
Import

Progress

Users can
open all their

account
information.

This is useful
when migrating

between
machines.

 400 4 4 4

17 Admin
Admin: Create

Lesson

Instructors can
create a new
lesson, which

holds
exercises.

 04, 05, 1000 20 22 9

18 Admin
Admin: Create

Exercise

Instructors can
create their

own exercise.
 19, 3000 30 32 14

109

ID Group Requirement Description
Pre-

Assignment
Precedes

Coupled
to

Budget
Design
Effort

Development
Effort

Testing
Effort

19 Admin
Admin: Create
Question for

Exercise

Allows
administrators

to add a
question to the

exercise.

 20, 2000 20 20 10

20 Admin
Admin: Attach

Media

Allows
instructors to
attach media.

 2000 10 28 7

21 Admin
Admin: See

student
progress

 400 8 8 2

22 Admin
Admin: Add

student

Instructors can
create an

account for
students

instead of them
having to
create it

themselves.

 200 5 5 3

23 Admin
Admin:

Remove
Student

 200 2 2 1

24 Admin
Admin: Delete

Question

Deletes a
single question

from the
exercise.

 700 10 7 7

110

ID Group Requirement Description
Pre-

Assignment
Precedes

Coupled
to

Budget
Design
Effort

Development
Effort

Testing
Effort

25 Admin
Admin: Delete

Exercise
 600 10 10 4

26 Admin
Admin: Delete

Lesson
 300 7 6 2

27 Admin
Admin: Save

lesson set

Saves the
lesson set,

which can be
later imported
by a student or

instructor.

 800 13 18 8

Spreadsheet 3. Shows the spreadsheet data containing the information about the features of the software. This includes the feature

ID, name, description, dependent features, precedent features, and resource requirements.

111

Value Voting Stakeholders

ID Requirement Aseniero Ledo

1 Account Creation 9 8

2 Login 9 7

3 List of Lessons + Navigation 5 7

4 Lesson Progress 3 7

5 List of Exercises 5 7

6 Exercise: Fill in the Blanks 7 8

7 Exercise: Multiple Choice 7 5

8 Exercise: True or False 7 4

9 Exercise: Translation 7 8

10 Exercise: Dictation 7 8

11 Grammar Summary 5 6

12 Exercise Feedback 7 6

13 Exercise: Correction 9 6

14 Import Lesson 5 5

15 Export Progress 1 1

16 Import Progress 1 2

17 Admin: Create Lesson 7 4

18 Admin: Create Exercise 7 5

19
Admin: Create Question for
Exercise

7 4

20 Admin: Attach Media 5 4

21 Admin: See student progress 9 5

22 Admin: Add student 3 3

23 Admin: Remove Student 3 5

24 Admin: Delete Question 7 2

25 Admin: Delete Exercise 7 4

26 Admin: Delete Lesson 7 4

27 Admin: Save lesson set 7 3

 Spreadsheet 4. Shows the spreadsheet containing the values of stakeholder priority votes

on each feature.

112

Resources Resource Capacities

Resource
Name

Resource
Type

Resource
Units

Release 1 Release 2

Budget Budget dollars 16000 7000

Design Effort Effort hours 230 153

Development Effort Effort hours 246 161

Testing Effort Effort hours 100 70

Stakeholders

Stakeholder E-mail
Stakeholder

Name
Weight

bon_adriel@hotmail.com Aseniero 9

davidledo89@gmail.com Ledo 9

 Spreadsheet 5. Shows the spreadsheet containing the data on the different resources and

their maximum allocation per release.

Spreadsheet 6. Shows the spreadsheet containing the data on stakeholder weights.

113

Stakeholder Satisfaction

Alternative

1
Alternative

2
Alternative

3
Alternative

4
Alternative

5

Very Excited 3 3 3 3 3

Excited 7 7 6 8 6

Neutral 11 11 10 10 9

Disappointed 5 3 3 4 5

Very
Disappointed

0 1 1 0 0

Surprised 1 2 4 2 4

Very
Surprised

0 0 0 0 0

 Spreadsheet 7. Shows the spreadsheet containing the different levels of stakeholder

satisfaction for each alternative plan.

114

Appendix II
PREVIOUS ITERATIONS OF STRATOS

Appendix II contains previous iterations of STRATOS from its initial sketches, previous

rough implementations, the one used during the study, and its current look and feel.

115

Sketch 1. The first sketch

concept of the hybrid

visualization of STRATOS. The

initial design was to have a

horizontal flow layout from left

to right. This design was

discarded later on in favour of the

tree layout which emphasized the

hierarchical nature of the data

more.

Iteration 1. The first rapid prototype of STRATOS based on Sketch 1.

116

Sketch 2. A sketch revisiting the

structure and layout of STRATOS. In this

iteration, the tree layout was added.

UML diagram sketches helped in the

conceptualization of the different visual

elements.

117

Iteration 2. A version of STRATOS that do not visualize information on feature priority votes and stakeholder feature points. The stakeholder

satisfaction bar charts were also previously drawn vertically.

118

Iteration 3. After showing the visualization to the domain expert, the visualization was improved. This iteration included stakeholder priority

votes on each feature, and the stakeholder feature points bar (drawn under the stakeholder satisfaction bar chart).

119

Sketch 3. After a pilot study, some

changes were made to the visualization.

The previously vertical bar chart

representing stakeholder satisfaction

was redrawn horizontally because the

participants during the pilot kept

associating them with the flow of

resources (i.e. they thought the bars of

the chart were the resources that flow

down into the releases rather than

stakeholder excitement levels). The bar

representing the initial allocation of

resources was also added to further

disassociate the stakeholder satisfaction

bar charts with the flow of resources.

120

Iteration 4. The look and feel of STRATOS during the study. This iteration is the same with the one presented in this thesis with the only difference

on colour palette.

121

Iteration 5. The final iteration of STRATOS presented in this thesis showing the solution set visualized during the exploration phase of the study.

122

