
 - 1 -

ProjectorKit: Easing Rapid Prototyping of Interactive
Applications for Mobile Projectors

Martin Weigel1,2, Sebastian Boring1,3, Jürgen Steimle2, Nicolai Marquardt1,
Saul Greenberg1 and Anthony Tang1

1Department of Computer Science
University of Calgary

2500 University Drive NW
Calgary, Alberta Canada T2N 1N4

2Max Planck Institute for Informatics
Cluster of Excellence MMCI

Campus E 1.7
66123 Saarbrücken, Germany

3Department of Computer Science
University of Copenhagen

Njalsgade 128, Bldg. 24, 5th floor
2300 Copenhagen S, Denmark

{mweigel, jsteimle}@mpi-inf.mpg.de, sebastian.boring@diku.dk, {nicolai.marquardt,saul,tonyt}@ucalgary.ca

ABSTRACT
Researchers have developed interaction concepts based on
mobile projectors. Yet pursuing work in this area—
particularly in building projector-based interactions
techniques within an application—is cumbersome and time-
consuming. To mitigate this problem, we contribute
ProjectorKit, a flexible open-source toolkit that eases rapid
prototyping mobile projector interaction techniques.

Author Keywords
Mobile projectors, toolkit, rapid prototyping.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI).

INTRODUCTION
In recent years, small mobile projectors have been
increasingly used as input/output devices, where their
position in the 3D physical environment affects how the
interface responds. The problem is that today’s
programming environments for user interfaces are typically
optimized for 2D GUIs. They do not map well to the 3D
projection environment. Using mobile projectors as part of
an interface requires a different set of development tools,
including functionality that reacts to the projector’s
position/orientation so that the projector correctly projects
its scene onto a physical surface. With the lack of such
tools, interactive applications for mobile projectors are
typically developed from scratch to replicate old work—a
time-consuming and complex task. While some toolkits for
developing 3D real-world interfaces are emerging [5], they
do not yet offer support for mobile projection.

To remedy this problem, our goal was to develop a toolkit
that simplifies how interaction designers and researchers
can rapidly prototype applications incorporating mobile
projectors. First, we articulate a small set of requirements
that specify programming and interaction aspects common
to mobile projector usage. Second, we discuss the design of
ProjectorKit, which realizes these requirements. Third, we
provide a concrete example to illustrate a sample ProjectKit
program. We then discuss how feedback from a small group

of programmers led to ProjectorKit’s improvements, along
with limitations.

REQUIREMENTS FOR A MOBILE PROJECTOR TOOLKIT
Inspired by Rukzio et al. [9], we identified a basic set of
five interaction requirements for mobile projectors that
collectively describe a set of basic roles played by mobile
projectors. These requirements describe functionality that
should be supported by a toolkit to ease development of
similar interaction scenarios. They encapsulate a
projection’s visual appearance, and define a projection’s
interactive behavior.

Project. The most basic purpose of a projector is to project
content onto a surface, where projection is bound by how
the user is holding it. It creates a display on any surface,
which is visible to multiple people (e.g., a video projected
onto a wall). The projector’s position and motion alters the
appearance of the projection: getting closer to the projection
surface decreases the projection’s size and vice versa.

R1: The toolkit should correct for jitter and keystone effects
(Fig. 1a). Mobile projections suffer from two fundamental
effects that impact image quality: (1) jitter occurs due to the
natural hand tremor; and (2), keystone effects appear when
the axis of projection is not perpendicular to the projection
surface.

Augment. Projectors can augment real-world objects by
projecting additional digital information onto them [8].
Virtual contents are bound to the real-world object
(projection mapping), where content is revealed when the
user projects onto the object(s). For example, a projector
could project up-to-date information on a physical flight
ticket, such as the expected delay of the flight [6].

R2: The toolkit should provide automated projection
mapping of the virtual content (Fig. 1b). Augmentation
requires anchored projections to be rendered “correctly”
regardless of the projector’s orientation relative to the
projection surface. These textures should remain anchored,
correctly positioned, and correctly displayed relative to the
physical world regardless of the projector’s movement
(which will change the spatial relationship between the
projector and that object, as well as the projection surface).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MobileHCI 2013, Aug 27–30, 2013, Munich, Germany.
Copyright 2013 ACM xxx-x-xxxx-xxxx-x/xx/xx-xx....$10.00.

 - 2 -

Select. The projector can act as a selection device, i.e.,
where the user can select a virtual item to perform an
activity bound to that item. For example, highlighting a
virtual button can trigger an event. Selection can be
performed in various ways: by targeting with the projector
[1,10]; by directly touching a portion of the projection
surface [11]; or by interacting in the light beam [3].

R3: The toolkit should provide selection-events (Fig. 1c).
These events can be defined in two ways. First, specifying
virtual content allows for events being triggered whenever a
projector fully or partially reveals that content. For
example, animations may start once that content is visible
in the projection area. Second, specifying a target area
within the projection area (i.e., the entire projection, just a
specific part of it, or a single pixel) should trigger an event
telling the developer what virtual content/real-world object
is targeted (i.e., selected) by the projection. For example,
the region of a projected mouse pointer can be used to
select virtual content.

Command. Beyond merely highlighting and shining a
mobile projector around an area, a user should be able to
interact with its information by executing commands, such
as zooming, rotating, and so forth. One way to allow for
such commands is via a user performing gestures with the
projector or the object projected upon [4].

R4: The toolkit should automatically interpret basic
gestures, and provide simple notification of these events
(Fig. 1d). Basic motion-based gestures should be
recognized, such as shaking, wiping and rotating. These
gestures could be performed over the projector, or on other
augmented physical objects.

Sharing. Projections may share the same projection area,
overlapping with one another. For example, such sharing
allows people to overlap their individual projections of
calendar events to merge them, or use overlapping regions
to transfer pictures in a shared workspace [2].

R5: The toolkit should provide notification of overlapping
projection/display areas (Fig. 1e). Multiple projections can
overlap in various ways. Overlapped regions can be
exploited, e.g., as a common display space to merge and
share information. One projection area can overlap another
one, or it may overlap an active screen (e.g., a wall-
mounted display). Overlaps may be full or partial.

PROJECTORKIT IMPLEMENTATION
Based on these requirements, we designed and developed
ProjectorKit, a .NET toolkit for rapid prototyping of mobile
projector applications. Our toolkit leverages the proxemics
information provided by the Proximity Toolkit [5]: spatial
relationships between entities in the environment (people,
projectors, displays, projectors, tracked objects), as well as
fixed displays and surfaces. The Proximity Toolkit
currently supports infrared marker tracking with Vicon and
OptiTrack systems. In principle, the “output” of such a
system might be similar to prior work using a single fixed
projector with a moving arm [7]; however, the mental
model provided to programmers by ProjectorKit is
fundamentally different, allowing programmers to think of
interactions with mobile projectors as first-class ideas rather
than focusing on interaction of mobile projectors with what
can be displayed in the environment.

Client-server architecture. We based ProjectorKit on a
client-server architecture. The server application imports
the toolkit and hosts the application logic and system state
(i.e., it contains the model and controller of the MVC
design pattern). In a one-time procedure on the server-side,
a developer registers intrinsic parameters of all projectors
and displays, and the physical objects and surfaces present
in the scene. Each projector is driven by a client, rendering
the projected visuals based on the properties of that
particular projector (i.e., the application view of the MVC
pattern). A prebuilt client supplied by the toolkit supports
many standard uses without modification, as the client is
only responsible for rendering the view. All components
communicate via Wi-Fi. While others have developed
standalone clients on a mobile device, the client-server
architecture is more amenable to the rapid design-develop-
deploy-test cycle. Rather than having to move code to
different clients (driving a mobile projector), a developer
can simply modify the code on the server, and get the same
interaction effects on the clients without modification. As
well, the server manages and tracks the spatial relationships
once rather than having each client to do that individually.

Virtual scene. Based on information from the Proximity
Toolkit, the toolkit automatically manages a model of the
virtual scene that maps the physical environment, tracking
moveable entities such as mobile projectors and objects as
they move through the environment. What the projectors
display is represented in this virtual scene as multiple
textures that are mapped on various surfaces. For example,

Figure 1. Toolkit requirements. (A) Improving projection quality, here keystone and hand jitter; (B) Automated projection

mapping; (C) selection events; (D) Gesture events with projectors or objects; and (E) overlapping events.

 - 3 -

the wall may have a texture of a map that is shown in the
real world only when the projector is shone against the
wall. Similarly, a tracked physical object may have a paired
virtual texture (containing additional information) that
follows the object in the virtual world.

Developers add, retrieve and remove both named and
anonymous objects to and from the scene using simple
function calls (e.g, add, get, remove). The correct
imagery for each projector is displayed by rendering the
textures and contained objects of the virtual scene with a
perspective camera with the projectors’ extrinsic and
intrinsic parameters. The projection of this rendering shows
all textures properly mapped in the physical world (R2).
The programmer therefore does not have to consider image
correction, or what is visible to the projector; instead, image
is rendered automatically to the projector.

Keystone effects and jitter are automatically removed from
projections using a margin around its interface. Depending
on the size of this margin, the projection is automatically
corrected without resizing and repositioning of the controls.

Event-driven programming. The toolkit performs ray-
tracing calculations based on the spatial relationships
between the different entities in the scene. Each time the
Proximity Toolkit sends a tracking update, ProjectorKit
automatically updates the scene model, and determines
whether the programmer should be notified of semantically
“interesting” events (R3–5). Selection events are fired when
a projector’s projection frustum overlaps with a target area
(R3). Similarly, a gesture event that has been subscribed to
by a developer is fired when one is detected (R4). Finally, if
projections overlap between projectors, or if a projection
overlaps with a fixed display, the overlap event is fired
(R5). Additional interaction-events, e.g. body gestures and
selection using touch or interaction with the light beam can
be implemented using these events.

Each event has three different parts, i.e. started,
changed, and ended. Each can be bound to event handlers,
much like for touch events in a multi-touch programming
environment. ProjectorKit calculates intersections between
projector pixels and objects in the virtual scene for each
tracker update, which determine which events should be
fired. Because ProjectorKit relies on a tracking
infrastructure, errors are mainly introduced by the
calibration and accuracy of the tracking infrastructure. In
practice, given a set of tracking cameras, small tracking
volumes produce very little error, but errors increase as
tracking volume increases in size. This mostly influences
the overlapping events. In our setup we experienced an
overlapping error around 0.5-7cm. As mentioned, better
calibration could reduce this error.

Event properties. Table 1 shows the basic set of proxemic
and projection properties that are automatically calculated
by ProjectorKit’s event system. The proxemic properties −
the distance and orientation between the projector and the

projection surface − are essential to implement all event
classes. For example, the distance between projector and
projection surface can be used to adjust the level of detail of
projected contents [1], while orientation can adapt the
perspective of a rendering [10]. From these proxemic
properties, additional projection properties are derived
using the intrinsic parameters of the projector, i.e.
resolution, opening angle, and center pixel. For example,
the average pixel density of the projection on the surface
can be used to adjust the level of detail of a texture.

Performance. In our setup, the applications of the toolkit
had latency of 10-100ms. This depends primarily on the
network and the rendering performance of the projectors.

EXAMPLE
The example in Listings L1 and L2 is written in the .NET
language C#. It shows projector-based interactions on an
augmented fantasy book. It contains a detail-on-demand
map, friend’s recommendations and a list of related books.
It only requires a server application that uses the previously
described design principles and the prebuilt client. The
application developer maps an image map of the fantasy
world as a texture onto the book and sets it at a fixed
relative position onto the book (L1 line 3-4). The toolkit
continuously adapts the texture’s position and orientation
such that it stays at a stable position on the book even when
location or orientation of the book changes.

The book contains a detail-on-demand map that shows
additional detail when the projector is close. Hence, a
selection-event is registered (L1 line 6-7) to indicate the
visibility of the map by calling the SelectionEvent-method
(L2 line 1-3). The event provides proxemic information
between the projection device and the surface; in this case
their respective distance. We use this to adjust the map’s
level of detail, i.e., show or hide small villages, when the
projector moves closer to/further away from the book.
Shaking the book for half a second changes the texture to
show different information, like reviews and related books
in a person’s library (L1 line 8-9 and L2 line 4-5).

When discussing the book with other people, overlapping
projections can show a combination of friends who liked
the book or show related books that these people have read.

Events Properties

Selection
Projector, target, distance, rotation, intersection
angles, targeting pixels, pixel density, visible part
of the target.

Gestures Object, start, duration, used area.

Overlap

Surface, overlapping coordinates, area size.
For both displays: display, overlapping pixels,
average pixel density, number of overlapping
pixels, percentage of the display, displayed content
For projections: distance, rotation, intersection
angles, max/min pixel density.

Table 1. Proxemic and projection event properties that are
automatically calculated by the event system.

 - 4 -

We avoid overlapping interference through an
OverlappingDisplays-event that blacks out the overlapping
area in the lower-density projection (L1 line 10-11 and L2
line 6-11). This pixel density depends upon the distance
(further away means lower density) of the projector to the
surface and the projectors intrinsic parameters.

DISCUSSION
Early feedback. We gathered feedback on an earlier version
of our system in two prototyping workshops and two
longer-term projects. Participants successfully implemented
a variety of applications using the toolkit, each with less
than 100 lines of code, including a multi-user game, a book
browser, projection of personal content on a public display
and a map interface with focus plus context behavior. All
applications were implemented without any obstacles.

Lessons learned. From this feedback, we modified the
toolkit to provide detailed event properties. This allows
programmers to focus on programming logic, instead of
calculating these properties (e.g. pixel density in the
projection). We also added 2D as well as 3D coordinates
while dealing with textures. Novice programmers preferred
simpler positioning as provided by 2D coordinates on the
planar surfaces, but 3D coordinates provide high flexibility.

Limitations. The toolkit currently relies on expensive high-
end tracking. In contrast to relatively tracking the position
of a mobile device, these tracking systems support accurate
and reliable tracking of absolute positions of mobile devices
as well as physical objects. This prototypical setup allows
for early explorations of new interaction concepts before
such tracking is directly integrated into mobile devices. The
underlying tracking system of the toolkit is modular [5],
which means that other tracking approaches (e.g., depth
sensors) can be reasonably incorporated in the future.
ProjectorKit also only supports compositions of planar
surfaces without too much texturing in the scenery, i.e., it
does not handle projection over curved or irregular objects
and does not correct for the underlying colors and textures.
This too could be corrected by modeling projections on a
more sophisticated model of the underlying 3D space. The
client/server infrastructure requires a server and restricts
on-device computations. This is a reasonable requirement in
prototyping environments: it avoids conflicting states, and
allows for easier debugging in multi-projector applications.
Finally, applications are currently limited to any of the
.NET languages along with WPF or Silverlight. This

restricts the mobile devices to Windows XP/7/8 handhelds,
tablets, and notebooks, e.g. the Microsoft Surface Pro.
However, the lightweight client architecture and the
message protocol allow for reasonable porting to other
platforms.

CONCLUSION
Based on an analysis of prior work, we described five
requirements for the design of toolkits that ease developing
interactive applications that make use of mobile projectors.
We used these requirements to design and implement a
software toolkit, ProjectorKit. As a service to the
community and to encourage further development of
mobile projector interactions, we contribute ProjectorKit as
an open source toolkit: http://grouplab.cpsc.ucalgary.ca/
cookbook/index.php/Toolkits/ProjectorKit.

ACKNOWLEDGEMENTS
We thank NSERC SurfNet and Nokia for their support.

REFERENCES
1. Cao, X. and Balakrishnan, R. Interacting with dynamically

defined information spaces using a handheld projector and a
pen. In ACM Proc. UIST’07.

2. Cao, X., Forlines, C., and Balakrishnan, R. Multi-user
interaction using handheld projectors. In ACM Proc. UIST’07.

3. Cowan, L. and Li, K. ShadowPuppets: supporting collocated
interaction with mobile projector phones using hand shadows.
In Proc. CHI '11.

4. Huber, J., Steimle, J., Liao, C., Liu, Q., and Mühlhäuser, M.
LightBeam: Interacting with Augmented Real-World Objects
in Pico Projections. In Proc MUM’12.

5. Marquardt, N., Diaz-Marino, R., Boring, S., and Greenberg, S.
The Proximity Toolkit: Prototyping proxemic interactions in
ubiquitous computing ecologies. In ACM Proc. UIST’11.

6. Mistry, P., Maes, P., and Chang, L. WUW - wear Ur world: a
wearable gestural interface. In ACM Proc. CHI EA'09.

7. Pinhanez, C. The Everywhere Displays Projector: A Device to
Create Ubiquitous Graphical Interfaces. In Proc. Ubicomp’01.

8. Raskar, R., van Baar, J., Beardsley, P., Willwacher, T., Rao,
S., and Forlines, C. iLamps: geometrically aware and self-
configuring projectors. In ACM SIGGRAPH’03.

9. Rukzio, E., Holleis, P., and Gellersen, H. Personal projectors
for pervasive computing. Pervasive Computing, IEEE, 11(2).

10. Schmidt, D., Molyneaux, D., and Cao, X. PICOntrol: Using a
Handheld Projector for Direct Control of Physical Devices
through Visible Light. In ACM Proc. UIST’12.

11. Winkler, C., Reinartz, C., Nowacka, D., and Rukzio, E.
Interactive phone call: synchronous remote collaboration and
projected interactive surfaces. In ACM Proc. ITS' 11.

1

2
3
4
5

6
7
8
9

10
11

var book = env.World.Get(“Book”);

// Load image with size 2000x1600mm
var image = new ImageElement(2000, 1600, @"image.jpg");
image.PositionOn(book, 0, 0);
env.World.Add(image);

var selection = new Selection(image, region, projector);
selection.Changed += SelectionEvent;
var shaking = new ShakeGesture(book, 0.5);
shaking.Recognized += ShakingEvent;
var overlap = new OverlappingDisplays(projector, p2);
overlap.OverlappingChanged += OverlappingEvent;

1
2
3

4
5

6
7
8
9

10
11

void SelectionEvent(object sender, SelectionEventArgs e)
{ if (e.Distance < 200) // Distance in mm
 /* Show additional detail */ }

void ShakingEvent (object sender, ShakingEventArgs e)
{ /* Code to change the texture information */ }

void OverlappingEvent(object s, OverlappingEventArgs e)
{ if (e.Display1.PixelDensity<=e.Display2.PixelDensity)
 e.Display1.BlackoutOverlapWith(Display2);
 else
 e.Display2.BlackoutOverlapWith(Display1);
 /* Combine views of two projectors */ }

Listing 1. Setup of the augmented interactive book. Listing 2. Methods to interact with the book example.

