
KinectArms: a Toolkit for Capturing and Displaying
Arm Embodiments in Distributed Tabletop Groupware

Aaron Genest1, Carl Gutwin1, Anthony Tang2, Michael Kalyn1, and Zenja Ivkovic1
1Department of Computer Science

University of Saskatchewan
110 Science Place, Saskatoon, Canada

2Department of Computer Science
University of Calgary

2500 University Dr. NW, Calgary, Canada
[aaron.genest, carl.gutwin, michael.kalyn, zenja.ivkovic]@usask.ca, tonyt@ucalgary.ca

ABSTRACT
Gestures are a ubiquitous part of human communication
over tables, but when tables are distributed, gestures
become difficult to capture and represent. There are several
problems: extracting arm images from video, representing
the height of the gesture, and making the arm embodiment
visible and understandable at the remote table. Current
solutions to these problems are often expensive, complex to
use, and difficult to set up. We have developed a new
toolkit – KinectArms – that quickly and easily captures and
displays arm embodiments. KinectArms uses a depth
camera to segment the video and determine gesture height,
and provides several visual effects for representing arms,
showing gesture height, and enhancing visibility.
KinectArms lets designers add rich arm embodiments to
their systems without undue cost or development effort,
greatly improving the expressiveness and usability of
distributed tabletop groupware.

Author Keywords
Distributed tabletops, gestures, embodiments, toolkits

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: CSCW.

INTRODUCTION
Gestural communication is a ubiquitous and important part
of co-located collaboration at real-world tables. People
gesture over tables in many different ways, including
pointing at objects, indicating paths and areas, emphasizing
elements of the conversation, and illustrating actions [2,6].
At distributed tables, gestural communication is equally
important, but gestures become much more difficult to
reproduce compared to face-to-face environments. There
are three main problems.

First, the complexity and subtlety of many over-the-table
gestures requires that systems use video-based
embodiments of hands and arms (e.g., [12,18,23]).
However, extracting images of people’s arms from the table

background can be computationally expensive, prone to
error (particularly if color is used for separation), and
dependent on good lighting conditions [28].

Second, information about the height of the gesture can be a
critical aspect of the communication [10], but height
information is usually lost in distributed settings. Gesture
height is difficult to capture (traditionally requiring
expensive tracking technologies), and is difficult to convey
through arm embodiments that are displayed as 2D images
on the remote table surface.

Third, the reduced physical presence of remote arm
embodiments, coupled with low frame rates and network
jitter, make remote gestures difficult to see and interpret.
Prior work has suggested visual traces as a way to increase
the salience of a remote gesture [9,24], but traces are
difficult to gather when arms move above the table.

The result of these three problems is that gestural
communication in distributed tabletop groupware is much
less expressive than at co-located tables. To address these
problems, we have developed a new toolkit – called
KinectArms – for capturing gestures over tables and
displaying arm embodiments at remote sites (Figure 1).

Figure 1: KinectArms used in a photo-sharing application,
showing shadow and height indictor (circle).

KinectArms solves all three of the issues mentioned above.
First, it uses a depth camera to quickly and efficiently
extract arm images from the video stream – the system runs
easily at 30 frames per second. Second, KinectArms uses
the depth camera to identify fine-grained height information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2013, February 23–27, 2013, San Antonio, Texas, USA.
Copyright 2013 ACM 978-1-60558-246-7/09/04...$5.00.

about the gesture, and can attach that information to
extracted features of the images such as hands and fingers.
Third, KinectArms provides several visualization
techniques to show gesture height, to enhance the visibility
of embodiments, and to highlight arm movements (e.g.,
abstract height indicators, color and transparency
modifications, and motion lines and traces). The toolkit
also provides several other capabilities, including automatic
calibration to the table surface, tracking of arms in the
scene, and wrappers to allow development in several
programming languages.

In this paper we describe the design, implementation, and
use of KinectArms. Our work makes three contributions.
• KinectArms is the first toolkit to provide a simple

solution to all the aspects of remote arm embodiments,
including capture and representation of gesture height.
It goes well beyond standard Kinect libraries, which
are not set up to recognize arms over table surfaces.

• We demonstrate that KinectArms can reproduce a wide
variety of previous designs (e.g., DOVE, VideoArms,
and C-Slate) and show that the platform can be used to
produce new representations as well, providing an
opportunity to compare different designs.

• We evaluate the toolkit in terms of performance,
developer effort, expressiveness, and simplicity, and
show that KinectArms provides a powerful yet easy-to-
use solution to the problem of remote gestures.

With KinectArms, designers can easily add support for
remote gesture to tabletops, which can dramatically
improve the usability and communicative capabilities of
distributed tabletop groupware.

RELATED WORK
Researchers have looked at several aspects of gestures,
including representation of gestures through embodiments,
techniques for enhancing remote embodiments, and
capturing and representing gesture height.

Representing Gestures Through Embodiments
Gestures are an important part of collocated settings and
equally valuable when people collaborate in distributed
settings [2]. The design of user embodiments for showing
remote gestures has long been considered in CSCW (e.g.,
[2,4,8]). Two approaches to embodiment design have
emerged: abstract representations that visualize particular
aspects of user information, and realistic representations
based on video that show more details of the user.

Realistic Representations
Realistic embodiments represent collaborators with full or
partial-body video, providing a rich representation of
people’s actions and postures. Early techniques used analog
video (e.g., VideoDraw, VideoWhiteBoard, or ClearBoard,
[11,25,26]); more recent designs typically use digital video,
such as DOVE [18], VideoArms [23], or C-Slate [12].
Realistic embodiments provide a large amount of
information about gestures, and convey considerable

subtlety, but are often complex and expensive [28]. In
addition, video embodiments have difficulty conveying
some aspects of remote action, such as gesture height.

Abstract Representations
Abstract visualizations of particular elements of user
activity can provide valuable information for collaboration.
Telepointers are a well-known example that represents the
pointing locations of collaborators with shapes and colors
[8]; in addition, researchers have shown that abstract
embodiments can be augmented with several different types
of user information [22]. The abstract approach to
embodiment design can convey information that is not
easily available through a realistic embodiment (e.g., height
can be represented directly with a specific visualization).

Combinations of Realistic and Abstract Representations
A few researchers have examined combinations of real and
abstract embodiments (an approach we follow with
KinectArms). Kirk et al. used video combined with a stylus
to permit sketching [14], and Tang et al. added contact
traces to VideoArms, an augmentation that participants
described as useful [24]. A more quantitative approach to
evaluating abstract components added to realistic
embodiments was adopted by Yamashita et al. [28] who
replayed entire gestures using a form of motion blur to
reduce the time needed for conversational grounding.

Enhancing Gesture Visibility in Distributed Settings
In distributed collaboration, remote embodiments are much
less visually obvious than people’s bodies in co-located
settings, and may be affected by problems such as low
frame rates or network jitter; as a result, it is easy to miss
actions and motions [7]. Motion traces can help to solve
these problems by smoothing motion and providing a
longer-lasting representation of a gesture (e.g., [8,24,29]).
Most trace techniques, however, have only considered
mouse movements rather than hand gestures (with Tang et
al’s work the notable exception [24]), and only show traces
when in contact with the surface. Combining historical
traces with height visualizations has been discussed [5], but
only for telepointer-style embodiments.

Capturing and Representing Gesture Height
The height of deictic gestures (which indicate things in a
shared environment) is valuable in communication [6].
Height, however, is not well supported in embodiment
design: although some embodiments and interaction
techniques incorporate differences between table touches
and hover states (e.g., [24,27]), most do not, and none
express a full range of height above the surface.

Part of this problem is that height is difficult to capture.
There has been considerable research on using height as an
input variable and capturing that height with cameras (often
depth cameras). Most often, height has been used to
identify touch interactions on variably distant surfaces, such
as with OmniTouch [9], which used a depth camera similar
to the Microsoft Kinect. Detecting touch on fixed-distance
(non-touch-sensitive) surfaces has been shown to be

possible using the Kinect camera (e.g., [28]). Marquardt et
al. are one of the few to suggest that interactions should
span the spaces between touch, hover, and above the
surface [17]. More elaborate models of a workspace have
been created with moving cameras, such as in KinectFusion
[13]. For most surface-based computing, however, a fixed
camera and fixed surface is a more common scenario.

Although height detection in the layer above (or in front of)
a surface has been used in a variety of gesture recognition
and input techniques (e.g., [1] and [12]), there are few
embodiments that represent height in this space. Two
exceptions are Fraser et al. [4], who showed that
representing approaches to a surface can improve
distributed interactions, and Genest and Gutwin [5], who
showed that abstract representations of height can improve
gesture interpretation in distributed settings. Neither
solution, however, captured detailed information about the
hand and arm: Fraser captured the position of the tip of a
stylus and Genest used a single 3D location, tracked with a
magnetic-field sensor on the user’s pointing finger.

REQUIREMENTS FOR AN ARM-EMBODIMENT TOOLKIT
A new toolkit for supporting the visualization of gestures in
distributed systems would be valuable for researchers and
developers. With the advent of cheap depth sensors, it has
become important to understand how all three dimensions
of gesture can be represented in a variety of distributed
settings. This cannot be easily done with the state of the art
in software tools for capturing and representing gestures. A
toolkit for arm embodiments has four main requirements:
1. Address the three problems described above – of easily

separating arm images, capturing and displaying height
information, and enhancing embodiment visibility;

2. Permit the rapid reproduction of existing embodiment
techniques to allow experimentation and comparison;

3. Support easy creation of new embodiment types with
both realistic and abstract representation techniques;

4. Provide simple setup and calibration.

THE KINECTARMS TOOLKIT
KinectArms is a toolkit that simplifies the capture of remote
tabletop gestures and the display of those gestures through
arm embodiments. KinectArms has two parts: a capture
module that recognizes hands and arms above the surface,
performs video separation, and identifies the height of each
pixel of the separated image; and a display module that
provides built-in effects to show height, to improve
visibility, and to provide movement traces. Additional
effects can be easily developed and added to the toolkit.

Overview and Setup
KinectTable uses an Xbox or PC Kinect sensor, fixed above
the table (1.8m is optimal for the Xbox version) and pointed
down. The camera need not be perfectly perpendicular to
the display surface; the automatic table detection (see
below) can handle small angular variation. The Kinect has a
field of view of 57° horizontally and 43° vertically, so at
1.8 meters, the camera can accommodate a 1.42m by 1.95m

table surface. This area can be increased for larger tables (at
the cost of resolution) by raising the Kinect.

Although 2D resolution will increase as the Kinect
approaches the surface, the depth image has an optimal
resolution at 1.8m, with an accuracy of approximately 2mm
at that distance [28]. This level of accuracy means that user
touches on the table surface can be approximately
determined (i.e., without requiring a touch-sensitive
surface); however, our tests described below used a PQLabs
touch overlay on a 60-inch LCD television.

After the Kinect is suspended above the table surface, the
KinectArms software can be started (usually by a client
application). On startup, KinectArms automatically detects
the table surface (see details below). Table detection takes
less than a second, and no further calibration is required –
KinectArms is then ready to capture and process arm
images, and add visual effects to these images.

The general algorithm for using KinectArms in an arbitrary
tabletop application is as follows:
1. Create an instance of the KinectArms client
2. Set up initial visual effects
3. While the application is running:

3.1 Get image data from the KinectArms client
3.2 Apply visual effects to the current frame
3.3 Draw the current frame to the table

KINECTTABLE: THE CAPTURE MODULE
The capture module of KinectArms uses a Microsoft Kinect
as its primary sensor. The Kinect incorporates a full-colour
camera and a depth camera (both 640x480), which can be
aligned to produce a depth-mapped image. From this image,
we accomplish both separation of arms and hands from the
table background, and recognition of the structure of the
arms in the scene. We note that this recognition is not
already provided by the Kinect – although the SDK
provides sophisticated body recognition, it is not designed
to capture isolated arms and hands over a table surface (it
needs to see the entire body for accurate recognition).

The main features provided by the KinectTable module are:
1. Fast setup and calibration, with automatic detection of

the table surface.
2. An API for accessing information about arms and table:

a. Image masks for the table and each of the arms
b. Fingertip, palm, and arm locations in three dimensions
c. Basic user tracking
d. Geometric properties for each of the arms.

The KinectTable API
The C++ version of the KinectTable API provides access to
image data, table information, and arm information.

Image Data
The raw color and depth images from the Kinect are
available in a custom structure; the application programmer
can use the raw information, or can obtain a processed
image representation from the KinectViz module.

KinectArmsClient-*client-=-KinectArmsGetClient();-
KinectData-data;-
client7>GetData(data);-
DepthImage&-depthImage-=-data.depthImage;-

Table Information
KinectTable provides information about the table surface
(from the automatic recognition step, as described below)
including the height of the table, the table corners, and a
bitmap mask where white pixels indicate the table.
BinaryImage&-maskImage-=-data.tableMaskImage;-

Arm and Finger Information
Information for each arm is stored in a C++ struct; these are
provided in an array representing all arms above the table
(stored in the order that they enter the space). Each struct
contains the following arm information:
1. Geometric values:

a. Mean height of the arm (using all pixels);
b. Total number of pixels corresponding to the arm;
c. The pixel at the geometric center of the arm;

2. An array of points defining the arm boundary;
3. A bitmap mask corresponding to the arm;
4. An array of points corresponding to fingertips;
5. An array of points for between-finger locations;
6. A point representing the center of the hand;
7. A point representing the base of the arm (i.e., the

intersection of the arm with the edge of the table);
8. A unique ID, retained between frames.

The height of any point in the arm image can be obtained
from the getHeight(Point- p) function. For example, the
following code retrieves the depth of an arm’s first finger:
client7>GetData(data);-
Arm&-arm1-=-data.arms[0];-
int-fingerHeight-=-client7>getHeight(arm1.fingers[0]);-

KinectTable System Architecture
KinectTable is comprised of four components: a camera
component, a table detector, an arm and hand detector, and
an arm tracker (Figure 2). KinectTable makes use of the
Kinect SDK or the OpenNI library (openni.org) to obtain
the Kinect images, and the OpenCV library for image
processing (opencv.willowgarage.com).

Figure 2: KinectTable system architecture.

Camera Component
The camera component fetches image data through the
Kinect SDK or OpenNI sets the SDK to align the colour
and depth images, and performs low-level processing to
prepare the data for table, arm, and hand detection. This
processing involves converting the Kinect images to our

own custom C++ structure, and passing a 5x5 median filter
over the image to fill in error pixels (some pixels fail to
update every frame).

Table Detection
The height and extents of the table are critical for arm
identification, and most systems use an interactive
calibration procedure to determine these values [5,9,23].
KinectArms simplifies this step with an automatic table
detector. Through the RecalculateTableCorners() function,-
KinectTable can be asked to identify the largest visible and
roughly planar surface in the image as the table. After
identification, any pixels in the depth map that are farther
than the table, or outside its boundaries, are ignored.

Table detection is performed with the following steps:
1. A Laplacian filter and thresholding function are passed

over the depth image to identify sharp changes in depth;
2. Depth edges are dilated to ensure continuity;
3. The center region enclosed by the continuous edge is

filled – this region represents the table;
4. Table corners are found using k-curvature (as in [20]) on

the region boundary (k-value of 30, threshold of 70°);
5. Table height is set as the lowest value of the table pixels.

Table identification is robust for slanted and curved tables,
but any large non-linear changes in depth may cause
incorrect table identification.

Arm and Finger Detection
Arms and fingers are identified using image processing
techniques similar to those used for table detection (Fig. 3):
1. Background subtraction is performed by removing pixels

in the depth image that are not above the table region.
The remaining pixels are arm candidates.

2. A Canny edge detector (max threshold 200, min 150,
Sobel filter order 5) finds the edges of the arms. Edges
are dilated to make them continuous.

3. Contours of each arm candidate are found using
OpenCV’s Suzuki85 algorithm.

4. All small contours (< 40 pixels in length) are discarded
as noise. The remaining contours are considered arms.

5. Geometric properties of each arm (mean depth, total
pixels, center point) are calculated from the contours.

6. The base of each arm is determined by finding the
intersection of the arm with the edge of the table.

7. Fingertip locations and the points between the fingers are
found using k-curvature (k-value 30, threshold 85°).

8. The center of the hand is calculated using a Euclidean
distance transform of the arm’s boundary points.

Arm Tracking and User Identification
Arms are given unique ID numbers so that the application
can track arms across multiple frames. Tracking takes
advantage of the location where the arm intersects the edge
of the table (a location that does not change rapidly in
tabletop work). KinectTable matches arm bases in the
current frame to known arm bases in the previous frame, by
comparing distance and time values between the frames. If

an arm in a previous frame cannot be matched, we assume
it has left the table area. If an arm does not return at the
same base position within five seconds, we re-use the ID
for the next arm that enters the table area.

.NET Wrapper
Developers can access KinectTable through a .NET
wrapper that provides .NET versions of all data structures.
The wrapper’s API is similar to the C++ API but also
provides event mechanisms whereby methods are called
automatically when new data is available.

Raw depth image

Arm blobs

Canny edge detection

Detecting arm crossing

Separated arm blobs

Structure over color image

Figure 3: Steps in processing arm images.

KINECTVIZ: THE DISPLAY MODULE
KinectViz provides a set of standard effects that can be
added to arm images obtained from KinectTable. The
library provides effects to visualize height, increase or
decrease arm visibility, improve user identification, and
provide motion traces. Using these effects, it is possible to
replicate many previous embodiments; KinectViz also
allows programmers to design new effects. Programmers
can set up effects with single API calls, and effects can be
changed dynamically and can be assigned to specific height
layers. Effects can be applied to all arms or to specific arms
(the examples below show the global versions).

Basic Arm Representations
VideoArms. KinectViz provides full-colour background-
subtracted images of hands and arms that can be drawn on
top of existing tabletop objects. The basic representation
(similar to VideoArms [23]) is built in a few lines of code:
client7>GetData(data);-

viz.updateData(data);-
viz.applyEffects();-

The applyEffects() method translates raw KinectTable data
into a drawable image, and also alters the image to add any
visual effects that have been chosen by the application
programmer (no effects are needed for the standard arm).

Figure 4: Standard arms drawn over table artifacts.

StructureArms. The extracted structure of the arm (base
point, hand center, and finger points) can be used as the
basis for an abstract representation of the arm. The main
advantage over video-based embodiments is that structure
information is much smaller than video, and can therefore
be used even in poor network conditions. The structure
points could also be used as anchors for artificial textures
(e.g., cartoon arms or even images of people’s real arms).
The points on the structure can be accessed through
KinectData (see above); as a demonstration, KinectViz
includes a ‘stick figure’ effect in its API (Figure 5).
viz.getEffect(kSkeleton).enabled-=-true;-

Figure 5. Stick-figure arms using structure points

Visual Effects 1: Height Indicators
Showing the height of a gesture can greatly improve
people’s ability to interpret the meaning of that gesture [5].
KinectViz provides three kinds of height indicator.

Circles. KinectViz can add abstract visualizations to the
realistic embodiment. To show height, we add a circle that
changes size and transparency based on the arm’s height
above the table (see Figure 6). KinectViz uses the lowest
fingertip as the centre of the circle, which assumes that
people are pointing downwards towards the surface.
viz.getEffect(kPointerCircle).enabled-=-true;

Figure 6: Circles – abstract visualization of gesture height.

Shadows. Arm shadows have been part of analog video
representations (e.g., [24]), but are not usually captured in
digital embodiments. KinectViz provides a shadow effect in
which the shadow is displaced to the side as the arm moves
higher above the table (Figure 7).
viz.getEffect(kShadow).enabled-=-true;-

Figure 7: Shadows – simulated representation of height.

Gradients. Richer representations of arm height are also
possible with KinectVis. One novel technique shows height
as a false-colour gradient (see Figure 8): parts of the arm
closer to the table are shown in cool colors (blues and
greens); higher parts of the arm are shown in warm colors.
viz.getEffect(kRainbow).enabled-=-true;--

Figure 8: Gradients – richer representation of arm height.

Visual Effects 2: Visibility and Identification Enhancements
Virtual embodiments can suffer from several kinds of
visibility problems: they are harder to notice and harder to
see than real arms [7,19], they are often difficult to identify,
and they can occlude objects on the table. To address these
problems, KinectViz provides effects that manipulate the
visibility of an embodiment and that assist identification.

Outlines. To increase noticeability, KinectViz includes an
effect that draws a colored outline around the arm (Figure
9); the effect can be applied to one or all of the arms.
viz.getEffect(kOutline).enabled-=-true;-

Figure 9: Outlines – visibility on complex backgrounds

Transparency. Embodiment visibility can be varied with a
transparency level defined by the application programmer,
or with a level that varies according to the height from the
surface (Figure 10). Transparency can be used in several
ways: as a basic way to avoid occlusion, or as a dynamic
effect (e.g., to reduce salience of less-active participants).
viz.getEffect(kTransparency).enabled-=-true;-

Figure 10: Transparency – reducing visibility and occlusion.

Tattoos. KinectArms can apply virtual tattoos or markings
to enhance identification (Figure 11). The tattoos move
with the user’s arm and are maintained even if the user
removes her arm from the Kinect’s field of view (see
description of IDs above). Tattoos can be any image or text,
and are defined by providing a directory for tattoo images.
Tattoos are applied in the order that arms enter the
workspace, and are set up similarly to other effects:
viz.getEffect(kTattoo).enabled-=-true;-

Figure 11: Tattoos – improving identification of embodiments.

Tinting. A second effect for helping people differentiate
between several embodiments applies a semi-transparent
color to the arm image. The effect is similar to the gradient
effect of Figure 8, but with a single color.
viz.getEffect(kTint).enabled-=-true;-

Visual Effects 3: Motion Traces
Gestures are easily missed in distributed settings because of
the reduced salience of virtual representations, or network
problems [8]. KinectViz provides two effects that help

solve this problem: motion lines and motion blur.

Motion lines. Fingers can leave motion-line traces as they
move above the table. This effect is created by storing the
finger point, connecting the points with lines, and fading
older lines to avoid cluttering the space (Figure 12). No
previous embodiment technique enables these kinds of
traces above the table surface.

Motion blur. A blur effect on the entire arm can help people
notice and understand arm movement and gesture [29].
KinectViz produces this effect by overlaying previous
frames on the current image (Figure 12), and increasing the
transparency on older frames.
viz.getEffect(kTraces).enabled-=-true;-
viz.getEffect(kMotionBlur).enabled-=-true;-

In both effects, variable historySize indicates how many
previous samples to use in the effect, and maxAge controls
how quickly traces fade away.

Figure 12: Motion lines (above) and motion blur (below).

Assigning Effects to Specific Height Layers and Users
People use different heights above the table surface to
provide different information in a gesture [9] – for example,
touching the surface, hovering, and medium and high levels
above the table. Therefore, embodiments should be able to
represent users differently depending on the height layer in
which they are gesturing. All of the effects in KinectViz
can be restricted to be visible only in certain layers above
the table. For each of the API calls above, there are
additional versions with two extra parameters – the lower
and upper height of the layer in which the effect should be
shown. This capability allows composite visualizations to
be created without needing to add new code. For example:

viz.getEffect(kMotionBlur).minHeight-=-0;-
viz.getEffect(kMotionBlur).maxHeight-=-1000;--

Similar method calls allow programmers to assign effects to
single users, using the user ID as determined by the library.

EVALUATION OF KINECTARMS
Our experiences with KinectArms allow an analytical
evaluation of several issues: the toolkit’s performance, the
complexity it adds to applications, and its extensibility,
generality, and expressive power.

Performance
KinectArms is fast, providing visualized arm images at
about 30 frames per second, even with multiple users.
KinectTable uses the depth camera and a set of fast image-
processing algorithms to carry out video separation, so a
major computational expense seen in other systems is
avoided. The Kinect hardware produces 30 frames per
second, and KinectTable easily processes at the same rate.

KinectVis carries out additional image processing and other
computation to add visual effects to the arm images.
Multiple or demanding effects in KinectViz, or a large
number of arms that need to be processed, could reduce the
frame rate depending on hardware. In our experience, with
four users and simultaneous use of several of the effects
described above, a standard PC (Windows 7, Core i5
processor) was able to maintain a rate of 30 frames per
second. In distributed tables, networking constraints are
more likely to impose the upper limit on frame rate (at
remote sites) than KinectArms.

Complexity and Usability for Application Programmers
Using KinectArms with groupware applications is simple.
API calls to KinectTable return arrays of hands and arms
with unique identifiers that match users from frame to
frame. Applications can choose how and where to display
the hands and arms depending on their specific
requirements. Similarly, KinectViz effects can be added
with simple changes to the API, and the API allows
developers to parameterize the effects (to different users
and specific height layers) and change effects dynamically
at runtime.

We carried out two informal tests of how easily
KinectArms can be used for client application projects.
First, we integrated KinectArms with a distributed photo-
sharing application running on two interactive tables. With
this application, users could manipulate shared images
using the touch capabilities of the networked tables and see
each other’s gestures with KinectViz effects (e.g., Figure 1
and Figure 13). The integration of KinectArms and the
photo-sharing application took less than one afternoon for a
computer science undergraduate student, suggesting that
developers will be able to easily access KinectTable data
and use KinectViz effects.

Second, we provided the KinectTable toolkit to another
researcher in our lab (not an author) who needed a toolkit
for exploring tabletop gesture recognition. Using calls to

the KinectTable API, the researcher was able to begin
developing gesture recognition systems within a day of
starting development. The KinectTable hand structure
provided enough information for the researchers to write
software that recognizes hand orientations and postures
(e.g., fingers up or fingers down), grasping gestures, and
pointing gestures. This research is currently ongoing, and is
continuing to use the KinectArms toolkit.

Figure 13: A remote user gesturing to indicate a shared image
(below) in the photo-sharing application (above).

Expressiveness: Replicating Existing Techniques
A measure of KinectArms’ breadth is its ability to duplicate
other arm embodiments that have appeared in previous
research. Using only the stock effects of KinectArms, we
are able to reproduce embodiments from a wide range of
previous work, including VideoArms [23], DOVE [18], C-
Slate [12], Fraser’s approach visualization [4], and
Yamashita’s gesture replay [29].

For example, Tang’s VideoArms shows hands and arms as
two-dimensional silhouettes over a workspace. A later
version that used a Microsoft Surface added ‘trace pearls’:
small, fading lines where fingers came in contact with the
surface [24]. KinectViz can replicate these two techniques
using its basic video arm representation, and a motion-line
effect that is limited to a small layer just above the surface
(0-1cm). When a pointing finger (defined as the lowest
finger on a hand) enters the low layer, traces are drawn.
This embodiment can be built with the following calls:

viz.getEffect(kTraces).enabled-=-true;-
viz.getEffect(kTint).enabled-=-true;-
((Tint&)(viz.getEffect(kTint))).handColors[0]-=----
--ColorPixel(255,100,100);-

The monochrome image of users’ hands and arms in
VideoArms can also be changed to full colour at no cost
(part of the basic video arm representation in KinectArms).

As a second example, both DOVE and C-Slate overlaid
video embodiments on a workspace and used transparency
either to reduce occlusion or to indicate that hands were
further from the tablet surface. In addition, DOVE provide
contact traces when the user touched the surface. These
techniques can be replicated using transparency, shadows,
and motion lines:
viz.getEffect(kTransparency).enabled-=-true;-
viz.getEffect(kShadow).enabled-=-true;-
viz.getEffect(kTraces).enabled-=-true;-

In addition, KinectArms shows its expressive power in two
other ways. First, by combining effects for different users
and different height layers, KinectViz can create complex
representations that go well beyond existing examples.
Second, KinectViz provides several novel effects not seen
elsewhere (e.g., outlines, color gradients, stick-figure arms,
tints, and above-the-table motion lines); and these new
effects were simple to build by using KinectArms’
processed images, extracted arm structure, and detailed
height information, capabilities which are not provided by
any other current toolkit.

Extensibility: Defining New Effects
Although KinectViz has a wide variety of stock
visualizations, developers may wish to create their own.
The extensibility of the KinectArms toolkit is shown in the
simplicity of the process of creating a new effect.
KinectTable provides easy access to hand and arm position
data and KinectViz automatically applies any enabled effect
when applyEffects is called. Adding a new effect involves
three steps:
1. Create a new class that extends class Effect, and

implement method applyEffect() to manipulates the
input image in the desired way.

2. Register the new effect with KinectViz, using the call
int-handle-=-registerEffect<MyEffectClass>();

3. The new effect can then be toggled on and off, and
added to different height layers, using the handle.

Generality
KinectArms works with a wide variety of tabletop setups
and table hardware. Tables with existing touch sensing can
be used alongside KinectArms (and can be used to augment
KinectViz effects by providing additional accuracy for
touch events). Top-down projection, a problem for most
video-separation techniques, works well with KinectArms,
since separation is done with the depth camera, not the
colour camera. KinectArms can also be used with non-
interactive tables (similar to Ishii’s TeamWorkStation).
One-way connections can be used to show remote users the

contents of a normal table, thus supporting collaboration
over paper-based artifacts.

EXTENSIONS TO KINECTARMS
Although KinectArms already provides substantial support
to developers of distributed tabletop groupware, there are
several extensions that can further improve remote gestural
communication, awareness, and system efficiency.

Texture + structure arm embodiments. Structure-based
representations of hands and arms are far cheaper to
transmit over networks than high quality images.
KinectArms automatically extracts structure information
about arms above the table, and this could allow designers
to provide some of the benefits of realistic video-based
embodiments without the costs of transmitting video. That
is, network performance can be improved by transmitting
hand and arm position data without images and adding
custom images at the remote location. Images of users’
arms could be taken at the beginning of a session or other
kinds of representations could be used. Future research
should determine the effectiveness of such cost rebalancing
(GPU vs. network) and how users respond to reconstructed
or artificial representations rather than live images.

Calibrating multiple distributed tables. Currently,
KinectTable provides no built-in support for calibrating
between two remote tables, and systems must be aligned by
hand (by setting both Kinect sensors at fixed heights above
the equal-sized surfaces). Based on this experience, we are
currently adding an interactive calibration tool to the
library, to permit the Kinect to be hung at different heights
above different tables.

Storing the History of Interactions. Some researchers have
discussed the ability to view long term interaction traces –
the historical movements of collaborators over an entire
session [16]. Since KinectTable identifies hands and arms
with unique IDs and stores their boundaries as well as
finger and palm locations in 3D, it would be possible to
archive all of the movements during a collaborative session
in this way and reconstruct it at a later date. Such replays
could be used to answer questions about what kinds of
activity occurred during a collaborative session, or could be
synchronized with audio recordings to visually identify
when different spaces in the workspace were used.

Using the space around the table. KinectTable recognizes
tables in its field of view and ignores everything outside of
that space. However, collaboration operates in a context
that includes the workspace and much research has shown
that seeing what is happening outside of the workspace is
valuable for both distributed and collocated activities (e.g.,
[4, 24]). Future versions of KinectTable could model the
entire body in the same way as Microsoft’s Kinect SDK,
except from above. Understanding where users are situated
at a table could, for example, allow identification of right
and left hands, allow better identification of hands, and
allow the tracking of users as they move around the table

(something that currently disrupts user tracking). It can also
improve awareness in distributed settings and allow
systems to make assumptions about user behaviour
depending on whether they are sitting or standing.

Supporting gesture recognition. KinectTable identifies
several key components of hands and arms (e.g., fingertips
and palms) and the current version of the toolkit is
sufficient for basic, if rudimentary, gesture recognition.
Future work will focus on higher levels of accuracy and
added identification features, such as palm orientation,
knuckle location, and wrist location. With these
improvements, KinectTable can be a tool for gesture
recognition as well as representation. We will use this
capability to explore possible collisions of communicative
gestures and command gestures in interactive systems.

Creating additional hybrid embodiments. Embodiments
have previously been classified as realistic or abstract [6]. A
third space, a hybrid of abstract and realistic, uses high
quality images of hands and arms with abstract visual
effects that accommodate for missing fidelity in the images,
emphasize existing information, or add information not
normally available in collocated settings. To date, few such
hybrid embodiments have been built; KinectArms is the
first tool to make the development of hybrid embodiments
simple and fast. KinectViz allows designers to create and
evaluate a wide range of hybrid embodiment designs. It will
also help address some challenges with hybrid embodiment
design, such as the placement of abstract elements to
enhance pointing (our assumption that the pointing finger is
always the lowest point of the hand and arms is correct for
only some cases).

Interface gestures vs. communicative gestures. KinectArms
can also help explore the tension between interface gestures
meant as input, and communicative gestures between
collaborators. Detailed gesture data about hands, fingers,
and arms, along with information about where collaborators
are positioned around a table will assist designers and
researchers in determining how best to create systems that
support both gestural input and gestural communication.

CONCLUSION
Representing rich and subtle gestures in distributed tabletop
groupware – particularly those that use varying levels of
height above the table – is often expensive, complex, and
can require specialized hardware and lengthy calibration.
As a solution to the problems of capturing and displaying
arm embodiments for remote work, we developed
KinectArms, a toolkit that helps groupware developers
build arm embodiments with a minimum of effort.
KinectArms handles video capture and separation,
determines fine-grained height above the table, and
provides visualizations that improve arm visibility,
representation of gesture height, and movement. The
KinectArms toolkit allows simple replication of most
existing arm embodiment techniques, and enables the
creation of many new types of representation.

In future work, we will carry out two kinds of further
development with KinectArms. First, we will continue
refinement of the current library – for example, to improve
edge detection, effect speed, and camera/table alignment.
Second, we will investigate the new extensions described
above; these are longer-term enhancements and new
functionality that will provide additional ways for people to
interact around distributed tabletop systems, all made
possible using cheap and easy-to-use components.

SOFTWARE AVAILABILITY
The KinectArms toolkit and the example programs used in
this paper are available at www.hci.usask.ca/KinectArms.

ACKNOWLEDGMENTS
This research was supported by the Natural Sciences and
Engineering Research Council of Canada, and the SurfNet
Research Network.

REFERENCES
1. Ballendat, T., Marquardt, N., Greenberg, S. Proxemic

interaction: designing for a proximity and orientation-
aware environment, Proc. ITS 2010, 121-130.

2. Bekker, M., Olson, J., Olson, G. Analysis of gestures
in face-to-face design teams provides guidance for how
to use groupware in design, Proc. DIS 1995, 157-166.

3. Benford, S., Bowers, J., Fahlén, L., Greenhalgh, C.,
and Snowdon, D. User embodiment in collaborative
virtual environments, Proc. CHI 1995, 242–249.

4. Fraser, M., McCarthy, M., Shaukat, M., and Smith, P.
Seconds Matter: Improving Distributed Coordination
by Tracking and Visualizing Display Trajectories,
Proc. CHI 2007, 1303-1312.

5. Genest, A. and Gutwin, C. Evaluating the effectiveness
of height visualizations for improving gestural
communication at distributed tabletops, Proc. CSCW
2012, 519–528.

6. Genest, A. and Gutwin, C., Characterizing Deixis over
Surfaces to Improve Remote Embodiments, Proc.
ECSCW 2011, 519-528.

7. Gutwin, C. and Greenberg, S. A descriptive framework
of workspace awareness for real-time groupware,
CSCW, 11, 3, 2002, 411–446.

8. Gutwin, C. and Penner, R. Improving interpretation of
remote gestures with telepointer traces. Proc. CSCW
2002, 49-57.

9. Harrison, C., Benko, H., and Wilson, A. OmniTouch:
Wearable Multitouch Interaction Everywhere. Proc.
UIST 2011, 441-450.

10. Hindmarsh, J. and Heath, C. Embodied reference: A
study of deixis in workplace interaction. Journal of
Pragmatics, 32, 12, 2000, 1855-1878.

11. Ishii, H. and Kobayashi, M. ClearBoard: a seamless
medium for shared drawing and conversation with eye
contact. Proc. CHI 1992, 525–532.

12. Izadi, S., Agarwal, A., Criminisi, A., Winn, J., Blake,
A., Fitzgibbon, A. C-Slate: a multi-touch and object
recognition system for remote collaboration using
horizontal surfaces. Proc. Tabletop 2007, 3–10.

13. Izadi, S., Newcombe, R., Kim, D., Hilliges, O.,
Molyneaux, D., Hodges, S., Kohli, P., Shotton, J.,
Davison, A., and Fitzgibbon, A. KinectFusion: Real-
Time Dynamic 3D Surface Reconstruction and
Interaction. Proc. SIGGRAPH 2011, 559-568.

14. Kirk, D. and Fraser, D. Comparing remote gesture
technologies for supporting collaborative physical
tasks. Proc. CHI 2006, 1191–1200.

15. Li, J., Wessels, A., Alem, L., and Stitzlein, C.
Exploring interface with representation of gesture for
remote collaboration. Proc. OZCHI 2007, 179-182.

16. MacEachren, A., Brewer, I., Cai, G., and Chen, J.
Visually enabled geocollaboration to support data
exploration and decision-making. Proc. International
Cartographic Conference 2003.

17. Marquardt, N., Jota, R., Greenberg, S., Jorge, J. The
Continuous Interaction Space: Interaction Techniques
Unifying Touch and Gesture on and above a Digital
Surface. Proc. Interact 2011, 461-476.

18. Ou, J., Chen, X., Fussell, S., and Yang, J. DOVE:
Drawing over video environment. Proc. Multimedia
2003, 100–101.

19. Pinelle, D., Guwin, C., Nacenta, M. The Effects of Co-
Present Embodiments on Awareness and Collaboration
in Tabletop Groupware. Proc. GI 2008, 1-8.

20. Segen, J. and Kumar, S. Human-computer interaction
using gesture recognition and 3D hand tracking. Proc.
ICIP 1998, 188-192.

21. Shoemaker, G., Tang, A., Booth, K. Shadow reaching:
a new perspective on interaction for large displays.
Proc. UIST 2007, 53-56.

22. Stach, T., Gutwin, C., Pinelle, D., Irani, P. Improving
recognition and characterization in groupware with
rich embodiments. Proc. CHI 2007, 11-20.

23. Tang, A., Neustaedter, C., Greenberg, S. Videoarms:
embodiments for mixed presence groupware. People
and Computers 20, 2007, 85-102.

24. Tang, A., Pahud, M., Inkpen, K., Benko, H., Tang, J.,
and Buxton, B. Three’s company: understanding
communication channels in three-way distributed
collaboration. Proc. CSCW 2010, 271–280.

25. Tang, J. and Minneman, S. VideoWhiteboard: video
shadows to support remote collaboration. Proc. CHI
1991, 315–322.

26. Tang, J. Minneman, S. VideoDraw: a video interface
for collaborative drawing. ToIS, 9, 2, 1991, 170–184.

27. Wigdor, D., Williams, S., Cronin, M., et al. Ripples:
utilizing per-contact visualizations to improve user
interaction with touch displays. Proc. UIST 2009, 3-12.

28. Wilson, A. Using a depth camera as a touch sensor.
Proc. ITS 2010. 69-72.

29. Yamashita, N., Kaji, K., Kuzuoka, H., and Hirata, K.
Improving visibility of remote gestures in distributed
tabletop collaboration. Proc. CSCW 2011, 95-104.

