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ABSTRACT 
Gestures are a ubiquitous part of human communication 
over tables, but when tables are distributed, gestures 
become difficult to capture and represent. There are several 
problems: extracting arm images from video, representing 
the height of the gesture, and making the arm embodiment 
visible and understandable at the remote table. Current 
solutions to these problems are often expensive, complex to 
use, and difficult to set up. We have developed a new 
toolkit – KinectArms – that quickly and easily captures and 
displays arm embodiments. KinectArms uses a depth 
camera to segment the video and determine gesture height, 
and provides several visual effects for representing arms, 
showing gesture height, and enhancing visibility.  
KinectArms lets designers add rich arm embodiments to 
their systems without undue cost or development effort, 
greatly improving the expressiveness and usability of 
distributed tabletop groupware. 
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INTRODUCTION 
Gestural communication is a ubiquitous and important part 
of co-located collaboration at real-world tables. People 
gesture over tables in many different ways, including 
pointing at objects, indicating paths and areas, emphasizing 
elements of the conversation, and illustrating actions [2,6]. 
At distributed tables, gestural communication is equally 
important, but gestures become much more difficult to 
reproduce compared to face-to-face environments. There 
are three main problems. 

First, the complexity and subtlety of many over-the-table 
gestures requires that systems use video-based 
embodiments of hands and arms (e.g., [12,18,23]). 
However, extracting images of people’s arms from the table 

background can be computationally expensive, prone to 
error (particularly if color is used for separation), and 
dependent on good lighting conditions [28]. 

Second, information about the height of the gesture can be a 
critical aspect of the communication [10], but height 
information is usually lost in distributed settings. Gesture 
height is difficult to capture (traditionally requiring 
expensive tracking technologies), and is difficult to convey 
through arm embodiments that are displayed as 2D images 
on the remote table surface. 

Third, the reduced physical presence of remote arm 
embodiments, coupled with low frame rates and network 
jitter, make remote gestures difficult to see and interpret. 
Prior work has suggested visual traces as a way to increase 
the salience of a remote gesture [9,24], but traces are 
difficult to gather when arms move above the table.  

The result of these three problems is that gestural 
communication in distributed tabletop groupware is much 
less expressive than at co-located tables. To address these 
problems, we have developed a new toolkit – called 
KinectArms – for capturing gestures over tables and 
displaying arm embodiments at remote sites (Figure 1).  

 
Figure 1: KinectArms used in a photo-sharing application, 
showing shadow and height indictor (circle). 

KinectArms solves all three of the issues mentioned above. 
First, it uses a depth camera to quickly and efficiently 
extract arm images from the video stream – the system runs 
easily at 30 frames per second. Second, KinectArms uses 
the depth camera to identify fine-grained height information 
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about the gesture, and can attach that information to 
extracted features of the images such as hands and fingers. 
Third, KinectArms provides several visualization 
techniques to show gesture height, to enhance the visibility 
of embodiments, and to highlight arm movements (e.g., 
abstract height indicators, color and transparency 
modifications, and motion lines and traces).  The toolkit 
also provides several other capabilities, including automatic 
calibration to the table surface, tracking of arms in the 
scene, and wrappers to allow development in several 
programming languages.  

In this paper we describe the design, implementation, and 
use of KinectArms. Our work makes three contributions. 
• KinectArms is the first toolkit to provide a simple 

solution to all the aspects of remote arm embodiments, 
including capture and representation of gesture height. 
It goes well beyond standard Kinect libraries, which 
are not set up to recognize arms over table surfaces. 

• We demonstrate that KinectArms can reproduce a wide 
variety of previous designs (e.g., DOVE, VideoArms, 
and C-Slate) and show that the platform can be used to 
produce new representations as well, providing an 
opportunity to compare different designs. 

• We evaluate the toolkit in terms of performance, 
developer effort, expressiveness, and simplicity, and 
show that KinectArms provides a powerful yet easy-to-
use solution to the problem of remote gestures. 

With KinectArms, designers can easily add support for 
remote gesture to tabletops, which can dramatically 
improve the usability and communicative capabilities of 
distributed tabletop groupware.  

RELATED WORK 
Researchers have looked at several aspects of gestures, 
including representation of gestures through embodiments, 
techniques for enhancing remote embodiments, and 
capturing and representing gesture height. 

Representing Gestures Through Embodiments 
Gestures are an important part of collocated settings and 
equally valuable when people collaborate in distributed 
settings [2]. The design of user embodiments for showing 
remote gestures has long been considered in CSCW (e.g., 
[2,4,8]). Two approaches to embodiment design have 
emerged: abstract representations that visualize particular 
aspects of user information, and realistic representations 
based on video that show more details of the user. 

Realistic Representations 
Realistic embodiments represent collaborators with full or 
partial-body video, providing a rich representation of 
people’s actions and postures. Early techniques used analog 
video (e.g., VideoDraw, VideoWhiteBoard, or ClearBoard, 
[11,25,26]); more recent designs typically use digital video, 
such as DOVE [18], VideoArms [23], or C-Slate [12]. 
Realistic embodiments provide a large amount of 
information about gestures, and convey considerable 

subtlety, but are often complex and expensive [28]. In 
addition, video embodiments have difficulty conveying 
some aspects of remote action, such as gesture height. 

Abstract Representations 
Abstract visualizations of particular elements of user 
activity can provide valuable information for collaboration. 
Telepointers are a well-known example that represents the 
pointing locations of collaborators with shapes and colors 
[8]; in addition, researchers have shown that abstract 
embodiments can be augmented with several different types 
of user information [22]. The abstract approach to 
embodiment design can convey information that is not 
easily available through a realistic embodiment (e.g., height 
can be represented directly with a specific visualization). 

Combinations of Realistic and Abstract Representations 
A few researchers have examined combinations of real and 
abstract embodiments (an approach we follow with 
KinectArms). Kirk et al. used video combined with a stylus 
to permit sketching [14], and Tang et al. added contact 
traces to VideoArms, an augmentation that participants 
described as useful [24]. A more quantitative approach to 
evaluating abstract components added to realistic 
embodiments was adopted by Yamashita et al. [28] who 
replayed entire gestures using a form of motion blur to 
reduce the time needed for conversational grounding.  

Enhancing Gesture Visibility in Distributed Settings 
In distributed collaboration, remote embodiments are much 
less visually obvious than people’s bodies in co-located 
settings, and may be affected by problems such as low 
frame rates or network jitter; as a result, it is easy to miss 
actions and motions [7]. Motion traces can help to solve 
these problems by smoothing motion and providing a 
longer-lasting representation of a gesture (e.g., [8,24,29]). 
Most trace techniques, however, have only considered 
mouse movements rather than hand gestures (with Tang et 
al’s work the notable exception [24]), and only show traces 
when in contact with the surface. Combining historical 
traces with height visualizations has been discussed [5], but 
only for telepointer-style embodiments. 

Capturing and Representing Gesture Height 
The height of deictic gestures (which indicate things in a 
shared environment) is valuable in communication [6]. 
Height, however, is not well supported in embodiment 
design: although some embodiments and interaction 
techniques incorporate differences between table touches 
and hover states (e.g., [24,27]), most do not, and none 
express a full range of height above the surface.  

Part of this problem is that height is difficult to capture. 
There has been considerable research on using height as an 
input variable and capturing that height with cameras (often 
depth cameras). Most often, height has been used to 
identify touch interactions on variably distant surfaces, such 
as with OmniTouch [9], which used a depth camera similar 
to the Microsoft Kinect. Detecting touch on fixed-distance 
(non-touch-sensitive) surfaces has been shown to be 



possible using the Kinect camera (e.g., [28]). Marquardt et 
al. are one of the few to suggest that interactions should 
span the spaces between touch, hover, and above the 
surface [17]. More elaborate models of a workspace have 
been created with moving cameras, such as in KinectFusion 
[13]. For most surface-based computing, however, a fixed 
camera and fixed surface is a more common scenario. 

Although height detection in the layer above (or in front of) 
a surface has been used in a variety of gesture recognition 
and input techniques (e.g., [1] and [12]), there are few 
embodiments that represent height in this space. Two 
exceptions are Fraser et al. [4], who showed that 
representing approaches to a surface can improve 
distributed interactions, and Genest and Gutwin [5], who 
showed that abstract representations of height can improve 
gesture interpretation in distributed settings. Neither 
solution, however, captured detailed information about the 
hand and arm: Fraser captured the position of the tip of a 
stylus and Genest used a single 3D location, tracked with a 
magnetic-field sensor on the user’s pointing finger. 

REQUIREMENTS FOR AN ARM-EMBODIMENT TOOLKIT 
A new toolkit for supporting the visualization of gestures in 
distributed systems would be valuable for researchers and 
developers. With the advent of cheap depth sensors, it has 
become important to understand how all three dimensions 
of gesture can be represented in a variety of distributed 
settings. This cannot be easily done with the state of the art 
in software tools for capturing and representing gestures. A 
toolkit for arm embodiments has four main requirements: 
1. Address the three problems described above – of easily 

separating arm images, capturing and displaying height 
information, and enhancing embodiment visibility; 

2. Permit the rapid reproduction of existing embodiment 
techniques to allow experimentation and comparison;  

3. Support easy creation of new embodiment types with 
both realistic and abstract representation techniques; 

4. Provide simple setup and calibration. 

THE KINECTARMS TOOLKIT 
KinectArms is a toolkit that simplifies the capture of remote 
tabletop gestures and the display of those gestures through 
arm embodiments. KinectArms has two parts: a capture 
module that recognizes hands and arms above the surface, 
performs video separation, and identifies the height of each 
pixel of the separated image; and a display module that 
provides built-in effects to show height, to improve 
visibility, and to provide movement traces. Additional 
effects can be easily developed and added to the toolkit. 

Overview and Setup 
KinectTable uses an Xbox or PC Kinect sensor, fixed above 
the table (1.8m is optimal for the Xbox version) and pointed 
down. The camera need not be perfectly perpendicular to 
the display surface; the automatic table detection (see 
below) can handle small angular variation. The Kinect has a 
field of view of 57° horizontally and 43° vertically, so at 
1.8 meters, the camera can accommodate a 1.42m by 1.95m 

table surface. This area can be increased for larger tables (at 
the cost of resolution) by raising the Kinect.  

Although 2D resolution will increase as the Kinect 
approaches the surface, the depth image has an optimal 
resolution at 1.8m, with an accuracy of approximately 2mm 
at that distance [28]. This level of accuracy means that user 
touches on the table surface can be approximately 
determined (i.e., without requiring a touch-sensitive 
surface); however, our tests described below used a PQLabs 
touch overlay on a 60-inch LCD television. 

After the Kinect is suspended above the table surface, the 
KinectArms software can be started (usually by a client 
application). On startup, KinectArms automatically detects 
the table surface (see details below). Table detection takes 
less than a second, and no further calibration is required – 
KinectArms is then ready to capture and process arm 
images, and add visual effects to these images. 

The general algorithm for using KinectArms in an arbitrary 
tabletop application is as follows: 
1. Create an instance of the KinectArms client 
2. Set up initial visual effects 
3. While the application is running: 

3.1 Get image data from the KinectArms client 
3.2 Apply visual effects to the current frame 
3.3 Draw the current frame to the table 

KINECTTABLE: THE CAPTURE MODULE 
The capture module of KinectArms uses a Microsoft Kinect 
as its primary sensor. The Kinect incorporates a full-colour 
camera and a depth camera (both 640x480), which can be 
aligned to produce a depth-mapped image. From this image, 
we accomplish both separation of arms and hands from the 
table background, and recognition of the structure of the 
arms in the scene. We note that this recognition is not 
already provided by the Kinect – although the SDK 
provides sophisticated body recognition, it is not designed 
to capture isolated arms and hands over a table surface (it 
needs to see the entire body for accurate recognition).  

The main features provided by the KinectTable module are: 
1. Fast setup and calibration, with automatic detection of 

the table surface. 
2. An API for accessing information about arms and table: 

a. Image masks for the table and each of the arms 
b. Fingertip, palm, and arm locations in three dimensions 
c. Basic user tracking 
d. Geometric properties for each of the arms.  

The KinectTable API 
The C++ version of the KinectTable API provides access to 
image data, table information, and arm information.  

Image Data 
The raw color and depth images from the Kinect are 
available in a custom structure; the application programmer 
can use the raw information, or can obtain a processed 
image representation from the KinectViz module. 



KinectArmsClient-*client-=-KinectArmsGetClient();-
KinectData-data;-
client7>GetData(data);-
DepthImage&-depthImage-=-data.depthImage;-

Table Information 
KinectTable provides information about the table surface 
(from the automatic recognition step, as described below) 
including the height of the table, the table corners, and a 
bitmap mask where white pixels indicate the table. 
BinaryImage&-maskImage-=-data.tableMaskImage;-

Arm and Finger Information 
Information for each arm is stored in a C++ struct; these are 
provided in an array representing all arms above the table 
(stored in the order that they enter the space). Each struct 
contains the following arm information:  
1. Geometric values: 

a. Mean height of the arm (using all pixels); 
b. Total number of pixels corresponding to the arm; 
c. The pixel at the geometric center of the arm; 

2. An array of points defining the arm boundary; 
3. A bitmap mask corresponding to the arm; 
4. An array of points corresponding to fingertips; 
5. An array of points for between-finger locations; 
6. A point representing the center of the hand; 
7. A point representing the base of the arm (i.e., the 

intersection of the arm with the edge of the table); 
8. A unique ID, retained between frames. 

The height of any point in the arm image can be obtained 
from the getHeight(Point- p) function. For example, the 
following code retrieves the depth of an arm’s first finger: 
client7>GetData(data);-
Arm&-arm1-=-data.arms[0];-
int-fingerHeight-=-client7>getHeight(arm1.fingers[0]);-

KinectTable System Architecture 
KinectTable is comprised of four components: a camera 
component, a table detector, an arm and hand detector, and 
an arm tracker (Figure 2). KinectTable makes use of the 
Kinect SDK or the OpenNI library (openni.org) to obtain 
the Kinect images, and the OpenCV library for image 
processing (opencv.willowgarage.com).  

 
Figure 2: KinectTable system architecture. 

Camera Component 
The camera component fetches image data through the 
Kinect SDK or OpenNI sets the SDK to align the colour 
and depth images, and performs low-level processing to 
prepare the data for table, arm, and hand detection. This 
processing involves converting the Kinect images to our 

own custom C++ structure, and passing a 5x5 median filter 
over the image to fill in error pixels (some pixels fail to 
update every frame). 

Table Detection 
The height and extents of the table are critical for arm 
identification, and most systems use an interactive 
calibration procedure to determine these values [5,9,23]. 
KinectArms simplifies this step with an automatic table 
detector. Through the RecalculateTableCorners() function,-
KinectTable can be asked to identify the largest visible and 
roughly planar surface in the image as the table. After 
identification, any pixels in the depth map that are farther 
than the table, or outside its boundaries, are ignored.  

Table detection is performed with the following steps: 
1. A Laplacian filter and thresholding function are passed 

over the depth image to identify sharp changes in depth; 
2. Depth edges are dilated to ensure continuity; 
3. The center region enclosed by the continuous edge is 

filled – this region represents the table; 
4. Table corners are found using k-curvature (as in [20]) on 

the region boundary (k-value of 30, threshold of 70°); 
5. Table height is set as the lowest value of the table pixels. 

Table identification is robust for slanted and curved tables, 
but any large non-linear changes in depth may cause 
incorrect table identification.  

Arm and Finger Detection 
Arms and fingers are identified using image processing 
techniques similar to those used for table detection (Fig. 3): 
1. Background subtraction is performed by removing pixels 

in the depth image that are not above the table region. 
The remaining pixels are arm candidates. 

2. A Canny edge detector (max threshold 200, min 150, 
Sobel filter order 5) finds the edges of the arms. Edges 
are dilated to make them continuous. 

3. Contours of each arm candidate are found using 
OpenCV’s Suzuki85 algorithm. 

4. All small contours (< 40 pixels in length) are discarded 
as noise. The remaining contours are considered arms. 

5. Geometric properties of each arm (mean depth, total 
pixels, center point) are calculated from the contours. 

6. The base of each arm is determined by finding the 
intersection of the arm with the edge of the table. 

7. Fingertip locations and the points between the fingers are 
found using k-curvature (k-value 30, threshold 85°). 

8. The center of the hand is calculated using a Euclidean 
distance transform of the arm’s boundary points. 

Arm Tracking and User Identification 
Arms are given unique ID numbers so that the application 
can track arms across multiple frames. Tracking takes 
advantage of the location where the arm intersects the edge 
of the table (a location that does not change rapidly in 
tabletop work). KinectTable matches arm bases in the 
current frame to known arm bases in the previous frame, by 
comparing distance and time values between the frames. If 



an arm in a previous frame cannot be matched, we assume 
it has left the table area. If an arm does not return at the 
same base position within five seconds, we re-use the ID 
for the next arm that enters the table area. 

.NET Wrapper 
Developers can access KinectTable through a .NET 
wrapper that provides .NET versions of all data structures. 
The wrapper’s API is similar to the C++ API but also 
provides event mechanisms whereby methods are called 
automatically when new data is available.  

 
Raw depth image 

 
Arm blobs 

 
Canny edge detection 

 
Detecting arm crossing 

 
Separated arm blobs 

 
Structure over color image 

Figure 3: Steps in processing arm images. 

KINECTVIZ: THE DISPLAY MODULE 
KinectViz provides a set of standard effects that can be 
added to arm images obtained from KinectTable. The 
library provides effects to visualize height, increase or 
decrease arm visibility, improve user identification, and 
provide motion traces. Using these effects, it is possible to 
replicate many previous embodiments; KinectViz also 
allows programmers to design new effects. Programmers 
can set up effects with single API calls, and effects can be 
changed dynamically and can be assigned to specific height 
layers. Effects can be applied to all arms or to specific arms 
(the examples below show the global versions). 

Basic Arm Representations 
VideoArms. KinectViz provides full-colour background-
subtracted images of hands and arms that can be drawn on 
top of existing tabletop objects. The basic representation 
(similar to VideoArms [23]) is built in a few lines of code: 
client7>GetData(data);-

viz.updateData(data);-
viz.applyEffects();-

The applyEffects() method translates raw KinectTable data 
into a drawable image, and also alters the image to add any 
visual effects that have been chosen by the application 
programmer (no effects are needed for the standard arm).  

 
Figure 4: Standard arms drawn over table artifacts. 

StructureArms. The extracted structure of the arm (base 
point, hand center, and finger points) can be used as the 
basis for an abstract representation of the arm. The main 
advantage over video-based embodiments is that structure 
information is much smaller than video, and can therefore 
be used even in poor network conditions. The structure 
points could also be used as anchors for artificial textures 
(e.g., cartoon arms or even images of people’s real arms). 
The points on the structure can be accessed through 
KinectData (see above); as a demonstration, KinectViz 
includes a ‘stick figure’ effect in its API (Figure 5). 
viz.getEffect(kSkeleton).enabled-=-true;-

 
Figure 5. Stick-figure arms using structure points 

Visual Effects 1: Height Indicators 
Showing the height of a gesture can greatly improve 
people’s ability to interpret the meaning of that gesture [5]. 
KinectViz provides three kinds of height indicator.  

Circles. KinectViz can add abstract visualizations to the 
realistic embodiment. To show height, we add a circle that 
changes size and transparency based on the arm’s height 
above the table (see Figure 6). KinectViz uses the lowest 
fingertip as the centre of the circle, which assumes that 
people are pointing downwards towards the surface.  
viz.getEffect(kPointerCircle).enabled-=-true; 



 
Figure 6: Circles – abstract visualization of gesture height. 

Shadows. Arm shadows have been part of analog video 
representations (e.g., [24]), but are not usually captured in 
digital embodiments. KinectViz provides a shadow effect in 
which the shadow is displaced to the side as the arm moves 
higher above the table (Figure 7).  
viz.getEffect(kShadow).enabled-=-true;- 

 
Figure 7: Shadows – simulated representation of height. 

Gradients. Richer representations of arm height are also 
possible with KinectVis. One novel technique shows height 
as a false-colour gradient (see Figure 8): parts of the arm 
closer to the table are shown in cool colors (blues and 
greens); higher parts of the arm are shown in warm colors. 
viz.getEffect(kRainbow).enabled-=-true;--

 
Figure 8: Gradients – richer representation of arm height. 

Visual Effects 2: Visibility and Identification Enhancements 
Virtual embodiments can suffer from several kinds of 
visibility problems: they are harder to notice and harder to 
see than real arms [7,19], they are often difficult to identify, 
and they can occlude objects on the table. To address these 
problems, KinectViz provides effects that manipulate the 
visibility of an embodiment and that assist identification.  

Outlines. To increase noticeability, KinectViz includes an 
effect that draws a colored outline around the arm (Figure 
9); the effect can be applied to one or all of the arms. 
viz.getEffect(kOutline).enabled-=-true;-

 
Figure 9: Outlines – visibility on complex backgrounds 

Transparency. Embodiment visibility can be varied with a 
transparency level defined by the application programmer, 
or with a level that varies according to the height from the 
surface (Figure 10). Transparency can be used in several 
ways: as a basic way to avoid occlusion, or as a dynamic 
effect (e.g., to reduce salience of less-active participants). 
viz.getEffect(kTransparency).enabled-=-true;-

 
Figure 10: Transparency – reducing visibility and occlusion. 

Tattoos. KinectArms can apply virtual tattoos or markings 
to enhance identification (Figure 11). The tattoos move 
with the user’s arm and are maintained even if the user 
removes her arm from the Kinect’s field of view (see 
description of IDs above). Tattoos can be any image or text, 
and are defined by providing a directory for tattoo images. 
Tattoos are applied in the order that arms enter the 
workspace, and are set up similarly to other effects: 
viz.getEffect(kTattoo).enabled-=-true;-

 
Figure 11: Tattoos – improving identification of embodiments.  

Tinting. A second effect for helping people differentiate 
between several embodiments applies a semi-transparent 
color to the arm image. The effect is similar to the gradient 
effect of Figure 8, but with a single color. 
viz.getEffect(kTint).enabled-=-true;-

Visual Effects 3: Motion Traces 
Gestures are easily missed in distributed settings because of 
the reduced salience of virtual representations, or network 
problems [8]. KinectViz provides two effects that help 



solve this problem: motion lines and motion blur. 

Motion lines. Fingers can leave motion-line traces as they 
move above the table. This effect is created by storing the 
finger point, connecting the points with lines, and fading 
older lines to avoid cluttering the space (Figure 12). No 
previous embodiment technique enables these kinds of 
traces above the table surface. 

Motion blur. A blur effect on the entire arm can help people 
notice and understand arm movement and gesture [29]. 
KinectViz produces this effect by overlaying previous 
frames on the current image (Figure 12), and increasing the 
transparency on older frames. 
viz.getEffect(kTraces).enabled-=-true;-
viz.getEffect(kMotionBlur).enabled-=-true;-

In both effects, variable historySize indicates how many 
previous samples to use in the effect, and maxAge controls 
how quickly traces fade away. 

 

 
Figure 12: Motion lines (above) and motion blur (below). 

Assigning Effects to Specific Height Layers and Users 
People use different heights above the table surface to 
provide different information in a gesture [9] – for example, 
touching the surface, hovering, and medium and high levels 
above the table. Therefore, embodiments should be able to 
represent users differently depending on the height layer in 
which they are gesturing. All of the effects in KinectViz 
can be restricted to be visible only in certain layers above 
the table. For each of the API calls above, there are 
additional versions with two extra parameters – the lower 
and upper height of the layer in which the effect should be 
shown. This capability allows composite visualizations to 
be created without needing to add new code. For example: 

viz.getEffect(kMotionBlur).minHeight-=-0;-
viz.getEffect(kMotionBlur).maxHeight-=-1000;--

Similar method calls allow programmers to assign effects to 
single users, using the user ID as determined by the library. 

EVALUATION OF KINECTARMS  
Our experiences with KinectArms allow an analytical 
evaluation of several issues: the toolkit’s performance, the 
complexity it adds to applications, and its extensibility, 
generality, and expressive power. 

Performance  
KinectArms is fast, providing visualized arm images at 
about 30 frames per second, even with multiple users. 
KinectTable uses the depth camera and a set of fast image-
processing algorithms to carry out video separation, so a 
major computational expense seen in other systems is 
avoided. The Kinect hardware produces 30 frames per 
second, and KinectTable easily processes at the same rate.  

KinectVis carries out additional image processing and other 
computation to add visual effects to the arm images. 
Multiple or demanding effects in KinectViz, or a large 
number of arms that need to be processed, could reduce the 
frame rate depending on hardware. In our experience, with 
four users and simultaneous use of several of the effects 
described above, a standard PC (Windows 7, Core i5 
processor) was able to maintain a rate of 30 frames per 
second. In distributed tables, networking constraints are 
more likely to impose the upper limit on frame rate (at 
remote sites) than KinectArms. 

Complexity and Usability for Application Programmers 
Using KinectArms with groupware applications is simple. 
API calls to KinectTable return arrays of hands and arms 
with unique identifiers that match users from frame to 
frame. Applications can choose how and where to display 
the hands and arms depending on their specific 
requirements. Similarly, KinectViz effects can be added 
with simple changes to the API, and the API allows 
developers to parameterize the effects (to different users 
and specific height layers) and change effects dynamically 
at runtime. 

We carried out two informal tests of how easily 
KinectArms can be used for client application projects. 
First, we integrated KinectArms with a distributed photo-
sharing application running on two interactive tables. With 
this application, users could manipulate shared images 
using the touch capabilities of the networked tables and see 
each other’s gestures with KinectViz effects (e.g., Figure 1 
and Figure 13). The integration of KinectArms and the 
photo-sharing application took less than one afternoon for a 
computer science undergraduate student, suggesting that 
developers will be able to easily access KinectTable data 
and use KinectViz effects.  

Second, we provided the KinectTable toolkit to another 
researcher in our lab (not an author) who needed a toolkit 
for exploring tabletop gesture recognition. Using calls to 



the KinectTable API, the researcher was able to begin 
developing gesture recognition systems within a day of 
starting development. The KinectTable hand structure 
provided enough information for the researchers to write 
software that recognizes hand orientations and postures 
(e.g., fingers up or fingers down), grasping gestures, and 
pointing gestures. This research is currently ongoing, and is 
continuing to use the KinectArms toolkit. 

 

 
Figure 13: A remote user gesturing to indicate a shared image 
(below) in the photo-sharing application (above). 

Expressiveness: Replicating Existing Techniques 
A measure of KinectArms’ breadth is its ability to duplicate 
other arm embodiments that have appeared in previous 
research. Using only the stock effects of KinectArms, we 
are able to reproduce embodiments from a wide range of 
previous work, including VideoArms [23], DOVE [18], C-
Slate [12], Fraser’s approach visualization [4], and 
Yamashita’s gesture replay [29].  

For example, Tang’s VideoArms shows hands and arms as 
two-dimensional silhouettes over a workspace. A later 
version that used a Microsoft Surface added ‘trace pearls’: 
small, fading lines where fingers came in contact with the 
surface [24]. KinectViz can replicate these two techniques 
using its basic video arm representation, and a motion-line 
effect that is limited to a small layer just above the surface 
(0-1cm). When a pointing finger (defined as the lowest 
finger on a hand) enters the low layer, traces are drawn. 
This embodiment can be built with the following calls: 

viz.getEffect(kTraces).enabled-=-true;-
viz.getEffect(kTint).enabled-=-true;-
((Tint&)(viz.getEffect(kTint))).handColors[0]-=----
--ColorPixel(255,100,100);-

The monochrome image of users’ hands and arms in 
VideoArms can also be changed to full colour at no cost 
(part of the basic video arm representation in KinectArms). 

As a second example, both DOVE and C-Slate overlaid 
video embodiments on a workspace and used transparency 
either to reduce occlusion or to indicate that hands were 
further from the tablet surface. In addition, DOVE provide 
contact traces when the user touched the surface. These 
techniques can be replicated using transparency, shadows, 
and motion lines: 
viz.getEffect(kTransparency).enabled-=-true;-
viz.getEffect(kShadow).enabled-=-true;-
viz.getEffect(kTraces).enabled-=-true;-

In addition, KinectArms shows its expressive power in two 
other ways. First, by combining effects for different users 
and different height layers, KinectViz can create complex 
representations that go well beyond existing examples. 
Second, KinectViz provides several novel effects not seen 
elsewhere (e.g., outlines, color gradients, stick-figure arms, 
tints, and above-the-table motion lines); and these new 
effects were simple to build by using KinectArms’ 
processed images, extracted arm structure, and detailed 
height information, capabilities which are not provided by 
any other current toolkit. 

Extensibility: Defining New Effects 
Although KinectViz has a wide variety of stock 
visualizations, developers may wish to create their own. 
The extensibility of the KinectArms toolkit is shown in the 
simplicity of the process of creating a new effect. 
KinectTable provides easy access to hand and arm position 
data and KinectViz automatically applies any enabled effect 
when applyEffects is called. Adding a new effect involves 
three steps: 
1. Create a new class that extends class Effect, and 

implement method applyEffect() to manipulates the 
input image in the desired way. 

2. Register the new effect with KinectViz, using the call 
int-handle-=-registerEffect<MyEffectClass>(); 

3. The new effect can then be toggled on and off, and 
added to different height layers, using the handle. 

Generality 
KinectArms works with a wide variety of tabletop setups 
and table hardware. Tables with existing touch sensing can 
be used alongside KinectArms (and can be used to augment 
KinectViz effects by providing additional accuracy for 
touch events). Top-down projection, a problem for most 
video-separation techniques, works well with KinectArms, 
since separation is done with the depth camera, not the 
colour camera. KinectArms can also be used with non-
interactive tables (similar to Ishii’s TeamWorkStation). 
One-way connections can be used to show remote users the 



contents of a normal table, thus supporting collaboration 
over paper-based artifacts.  

EXTENSIONS TO KINECTARMS 
Although KinectArms already provides substantial support 
to developers of distributed tabletop groupware, there are 
several extensions that can further improve remote gestural 
communication, awareness, and system efficiency. 

Texture + structure arm embodiments. Structure-based 
representations of hands and arms are far cheaper to 
transmit over networks than high quality images. 
KinectArms automatically extracts structure information 
about arms above the table, and this could allow designers 
to provide some of the benefits of realistic video-based 
embodiments without the costs of transmitting video. That 
is, network performance can be improved by transmitting 
hand and arm position data without images and adding 
custom images at the remote location. Images of users’ 
arms could be taken at the beginning of a session or other 
kinds of representations could be used. Future research 
should determine the effectiveness of such cost rebalancing 
(GPU vs. network) and how users respond to reconstructed 
or artificial representations rather than live images. 

Calibrating multiple distributed tables. Currently, 
KinectTable provides no built-in support for calibrating 
between two remote tables, and systems must be aligned by 
hand (by setting both Kinect sensors at fixed heights above 
the equal-sized surfaces). Based on this experience, we are 
currently adding an interactive calibration tool to the 
library, to permit the Kinect to be hung at different heights 
above different tables. 

Storing the History of Interactions. Some researchers have 
discussed the ability to view long term interaction traces – 
the historical movements of collaborators over an entire 
session [16]. Since KinectTable identifies hands and arms 
with unique IDs and stores their boundaries as well as 
finger and palm locations in 3D, it would be possible to 
archive all of the movements during a collaborative session 
in this way and reconstruct it at a later date. Such replays 
could be used to answer questions about what kinds of 
activity occurred during a collaborative session, or could be 
synchronized with audio recordings to visually identify 
when different spaces in the workspace were used.  

Using the space around the table. KinectTable recognizes 
tables in its field of view and ignores everything outside of 
that space. However, collaboration operates in a context 
that includes the workspace and much research has shown 
that seeing what is happening outside of the workspace is 
valuable for both distributed and collocated activities (e.g., 
[4, 24]). Future versions of KinectTable could model the 
entire body in the same way as Microsoft’s Kinect SDK, 
except from above. Understanding where users are situated 
at a table could, for example, allow identification of right 
and left hands, allow better identification of hands, and 
allow the tracking of users as they move around the table 

(something that currently disrupts user tracking). It can also 
improve awareness in distributed settings and allow 
systems to make assumptions about user behaviour 
depending on whether they are sitting or standing.  

Supporting gesture recognition. KinectTable identifies 
several key components of hands and arms (e.g., fingertips 
and palms) and the current version of the toolkit is 
sufficient for basic, if rudimentary, gesture recognition. 
Future work will focus on higher levels of accuracy and 
added identification features, such as palm orientation, 
knuckle location, and wrist location. With these 
improvements, KinectTable can be a tool for gesture 
recognition as well as representation. We will use this 
capability to explore possible collisions of communicative 
gestures and command gestures in interactive systems. 

Creating additional hybrid embodiments. Embodiments 
have previously been classified as realistic or abstract [6]. A 
third space, a hybrid of abstract and realistic, uses high 
quality images of hands and arms with abstract visual 
effects that accommodate for missing fidelity in the images, 
emphasize existing information, or add information not 
normally available in collocated settings. To date, few such 
hybrid embodiments have been built; KinectArms is the 
first tool to make the development of hybrid embodiments 
simple and fast. KinectViz allows designers to create and 
evaluate a wide range of hybrid embodiment designs. It will 
also help address some challenges with hybrid embodiment 
design, such as the placement of abstract elements to 
enhance pointing (our assumption that the pointing finger is 
always the lowest point of the hand and arms is correct for 
only some cases).  

Interface gestures vs. communicative gestures. KinectArms 
can also help explore the tension between interface gestures 
meant as input, and communicative gestures between 
collaborators. Detailed gesture data about hands, fingers, 
and arms, along with information about where collaborators 
are positioned around a table will assist designers and 
researchers in determining how best to create systems that 
support both gestural input and gestural communication. 

CONCLUSION 
Representing rich and subtle gestures in distributed tabletop 
groupware – particularly those that use varying levels of 
height above the table – is often expensive, complex, and 
can require specialized hardware and lengthy calibration. 
As a solution to the problems of capturing and displaying 
arm embodiments for remote work, we developed 
KinectArms, a toolkit that helps groupware developers 
build arm embodiments with a minimum of effort. 
KinectArms handles video capture and separation, 
determines fine-grained height above the table, and 
provides visualizations that improve arm visibility, 
representation of gesture height, and movement. The 
KinectArms toolkit allows simple replication of most 
existing arm embodiment techniques, and enables the 
creation of many new types of representation.  



In future work, we will carry out two kinds of further 
development with KinectArms. First, we will continue 
refinement of the current library – for example, to improve 
edge detection, effect speed, and camera/table alignment. 
Second, we will investigate the new extensions described 
above; these are longer-term enhancements and new 
functionality that will provide additional ways for people to 
interact around distributed tabletop systems, all made 
possible using cheap and easy-to-use components. 

SOFTWARE AVAILABILITY 
The KinectArms toolkit and the example programs used in 
this paper are available at www.hci.usask.ca/KinectArms. 
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